varnish-cache/lib/libvgz/adler32.c
0
/* adler32.c -- compute the Adler-32 checksum of a data stream
1
 * Copyright (C) 1995-2011, 2016 Mark Adler
2
 * For conditions of distribution and use, see copyright notice in zlib.h
3
 */
4
5
/* @(#) $Id$ */
6
7
#include "zutil.h"
8
9
#ifdef NOVGZ
10
local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
11
12
#define BASE 65521U     /* largest prime smaller than 65536 */
13
#define NMAX 5552
14
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
15
16
#define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
17
#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
18
#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
19
#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
20
#define DO16(buf)   DO8(buf,0); DO8(buf,8);
21
22
/* use NO_DIVIDE if your processor does not do division in hardware --
23
   try it both ways to see which is faster */
24
#ifdef NO_DIVIDE
25
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
26
   (thank you to John Reiser for pointing this out) */
27
#  define CHOP(a) \
28
    do { \
29
        unsigned long tmp = a >> 16; \
30
        a &= 0xffffUL; \
31
        a += (tmp << 4) - tmp; \
32
    } while (0)
33
#  define MOD28(a) \
34
    do { \
35
        CHOP(a); \
36
        if (a >= BASE) a -= BASE; \
37
    } while (0)
38
#  define MOD(a) \
39
    do { \
40
        CHOP(a); \
41
        MOD28(a); \
42
    } while (0)
43
#  define MOD63(a) \
44
    do { /* this assumes a is not negative */ \
45
        z_off64_t tmp = a >> 32; \
46
        a &= 0xffffffffL; \
47
        a += (tmp << 8) - (tmp << 5) + tmp; \
48
        tmp = a >> 16; \
49
        a &= 0xffffL; \
50
        a += (tmp << 4) - tmp; \
51
        tmp = a >> 16; \
52
        a &= 0xffffL; \
53
        a += (tmp << 4) - tmp; \
54
        if (a >= BASE) a -= BASE; \
55
    } while (0)
56
#else
57
#  define MOD(a) a %= BASE
58
#  define MOD28(a) a %= BASE
59
#  define MOD63(a) a %= BASE
60
#endif
61
62
/* ========================================================================= */
63
uLong ZEXPORT adler32_z(adler, buf, len)
64
    uLong adler;
65
    const Bytef *buf;
66
    z_size_t len;
67
{
68
    unsigned long sum2;
69
    unsigned n;
70
71
    /* split Adler-32 into component sums */
72
    sum2 = (adler >> 16) & 0xffff;
73
    adler &= 0xffff;
74
75
    /* in case user likes doing a byte at a time, keep it fast */
76
    if (len == 1) {
77
        adler += buf[0];
78
        if (adler >= BASE)
79
            adler -= BASE;
80
        sum2 += adler;
81
        if (sum2 >= BASE)
82
            sum2 -= BASE;
83
        return adler | (sum2 << 16);
84
    }
85
86
    /* initial Adler-32 value (deferred check for len == 1 speed) */
87
    if (buf == Z_NULL)
88
        return 1L;
89
90
    /* in case short lengths are provided, keep it somewhat fast */
91
    if (len < 16) {
92
        while (len--) {
93
            adler += *buf++;
94
            sum2 += adler;
95
        }
96
        if (adler >= BASE)
97
            adler -= BASE;
98
        MOD28(sum2);            /* only added so many BASE's */
99
        return adler | (sum2 << 16);
100
    }
101
102
    /* do length NMAX blocks -- requires just one modulo operation */
103
    while (len >= NMAX) {
104
        len -= NMAX;
105
        n = NMAX / 16;          /* NMAX is divisible by 16 */
106
        do {
107
            DO16(buf);          /* 16 sums unrolled */
108
            buf += 16;
109
        } while (--n);
110
        MOD(adler);
111
        MOD(sum2);
112
    }
113
114
    /* do remaining bytes (less than NMAX, still just one modulo) */
115
    if (len) {                  /* avoid modulos if none remaining */
116
        while (len >= 16) {
117
            len -= 16;
118
            DO16(buf);
119
            buf += 16;
120
        }
121
        while (len--) {
122
            adler += *buf++;
123
            sum2 += adler;
124
        }
125
        MOD(adler);
126
        MOD(sum2);
127
    }
128
129
    /* return recombined sums */
130
    return adler | (sum2 << 16);
131
}
132
133
/* ========================================================================= */
134
uLong ZEXPORT adler32(adler, buf, len)
135
    uLong adler;
136
    const Bytef *buf;
137
    uInt len;
138
{
139
    return adler32_z(adler, buf, len);
140
}
141
142
/* ========================================================================= */
143
local uLong adler32_combine_(adler1, adler2, len2)
144
    uLong adler1;
145
    uLong adler2;
146
    z_off64_t len2;
147
{
148
    unsigned long sum1;
149
    unsigned long sum2;
150
    unsigned rem;
151
152
    /* for negative len, return invalid adler32 as a clue for debugging */
153
    if (len2 < 0)
154
        return 0xffffffffUL;
155
156
    /* the derivation of this formula is left as an exercise for the reader */
157
    MOD63(len2);                /* assumes len2 >= 0 */
158
    rem = (unsigned)len2;
159
    sum1 = adler1 & 0xffff;
160
    sum2 = rem * sum1;
161
    MOD(sum2);
162
    sum1 += (adler2 & 0xffff) + BASE - 1;
163
    sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
164
    if (sum1 >= BASE) sum1 -= BASE;
165
    if (sum1 >= BASE) sum1 -= BASE;
166
    if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
167
    if (sum2 >= BASE) sum2 -= BASE;
168
    return sum1 | (sum2 << 16);
169
}
170
171
/* ========================================================================= */
172
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
173
    uLong adler1;
174
    uLong adler2;
175
    z_off_t len2;
176
{
177
    return adler32_combine_(adler1, adler2, len2);
178
}
179
180
uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
181
    uLong adler1;
182
    uLong adler2;
183
    z_off64_t len2;
184
{
185
    return adler32_combine_(adler1, adler2, len2);
186
}
187
#else /* NOVGZ */
188 0
uLong ZEXPORT adler32(adler, buf, len)
189
    uLong adler;
190
    const Bytef *buf;
191
    uInt len;
192
{
193 0
        (void)adler;
194 0
        (void)buf;
195 0
        (void)len;
196 0
        abort();
197
}
198
#endif /* NOVGZ */