| | varnish-cache/lib/libvgz/adler32.c |
0 |
|
/* adler32.c -- compute the Adler-32 checksum of a data stream |
1 |
|
* Copyright (C) 1995-2011, 2016 Mark Adler |
2 |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
3 |
|
*/ |
4 |
|
|
5 |
|
/* @(#) $Id$ */ |
6 |
|
|
7 |
|
#include "zutil.h" |
8 |
|
|
9 |
|
#ifdef NOVGZ |
10 |
|
local uLong adler32_combine_ (uLong adler1, uLong adler2, z_off64_t len2); |
11 |
|
|
12 |
|
#define BASE 65521U /* largest prime smaller than 65536 */ |
13 |
|
#define NMAX 5552 |
14 |
|
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
15 |
|
|
16 |
|
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
17 |
|
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
18 |
|
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); |
19 |
|
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); |
20 |
|
#define DO16(buf) DO8(buf,0); DO8(buf,8); |
21 |
|
|
22 |
|
/* use NO_DIVIDE if your processor does not do division in hardware -- |
23 |
|
try it both ways to see which is faster */ |
24 |
|
#ifdef NO_DIVIDE |
25 |
|
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15 |
26 |
|
(thank you to John Reiser for pointing this out) */ |
27 |
|
# define CHOP(a) \ |
28 |
|
do { \ |
29 |
|
unsigned long tmp = a >> 16; \ |
30 |
|
a &= 0xffffUL; \ |
31 |
|
a += (tmp << 4) - tmp; \ |
32 |
|
} while (0) |
33 |
|
# define MOD28(a) \ |
34 |
|
do { \ |
35 |
|
CHOP(a); \ |
36 |
|
if (a >= BASE) a -= BASE; \ |
37 |
|
} while (0) |
38 |
|
# define MOD(a) \ |
39 |
|
do { \ |
40 |
|
CHOP(a); \ |
41 |
|
MOD28(a); \ |
42 |
|
} while (0) |
43 |
|
# define MOD63(a) \ |
44 |
|
do { /* this assumes a is not negative */ \ |
45 |
|
z_off64_t tmp = a >> 32; \ |
46 |
|
a &= 0xffffffffL; \ |
47 |
|
a += (tmp << 8) - (tmp << 5) + tmp; \ |
48 |
|
tmp = a >> 16; \ |
49 |
|
a &= 0xffffL; \ |
50 |
|
a += (tmp << 4) - tmp; \ |
51 |
|
tmp = a >> 16; \ |
52 |
|
a &= 0xffffL; \ |
53 |
|
a += (tmp << 4) - tmp; \ |
54 |
|
if (a >= BASE) a -= BASE; \ |
55 |
|
} while (0) |
56 |
|
#else |
57 |
|
# define MOD(a) a %= BASE |
58 |
|
# define MOD28(a) a %= BASE |
59 |
|
# define MOD63(a) a %= BASE |
60 |
|
#endif |
61 |
|
|
62 |
|
/* ========================================================================= */ |
63 |
|
uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) { |
64 |
|
unsigned long sum2; |
65 |
|
unsigned n; |
66 |
|
|
67 |
|
/* split Adler-32 into component sums */ |
68 |
|
sum2 = (adler >> 16) & 0xffff; |
69 |
|
adler &= 0xffff; |
70 |
|
|
71 |
|
/* in case user likes doing a byte at a time, keep it fast */ |
72 |
|
if (len == 1) { |
73 |
|
adler += buf[0]; |
74 |
|
if (adler >= BASE) |
75 |
|
adler -= BASE; |
76 |
|
sum2 += adler; |
77 |
|
if (sum2 >= BASE) |
78 |
|
sum2 -= BASE; |
79 |
|
return adler | (sum2 << 16); |
80 |
|
} |
81 |
|
|
82 |
|
/* initial Adler-32 value (deferred check for len == 1 speed) */ |
83 |
|
if (buf == Z_NULL) |
84 |
|
return 1L; |
85 |
|
|
86 |
|
/* in case short lengths are provided, keep it somewhat fast */ |
87 |
|
if (len < 16) { |
88 |
|
while (len--) { |
89 |
|
adler += *buf++; |
90 |
|
sum2 += adler; |
91 |
|
} |
92 |
|
if (adler >= BASE) |
93 |
|
adler -= BASE; |
94 |
|
MOD28(sum2); /* only added so many BASE's */ |
95 |
|
return adler | (sum2 << 16); |
96 |
|
} |
97 |
|
|
98 |
|
/* do length NMAX blocks -- requires just one modulo operation */ |
99 |
|
while (len >= NMAX) { |
100 |
|
len -= NMAX; |
101 |
|
n = NMAX / 16; /* NMAX is divisible by 16 */ |
102 |
|
do { |
103 |
|
DO16(buf); /* 16 sums unrolled */ |
104 |
|
buf += 16; |
105 |
|
} while (--n); |
106 |
|
MOD(adler); |
107 |
|
MOD(sum2); |
108 |
|
} |
109 |
|
|
110 |
|
/* do remaining bytes (less than NMAX, still just one modulo) */ |
111 |
|
if (len) { /* avoid modulos if none remaining */ |
112 |
|
while (len >= 16) { |
113 |
|
len -= 16; |
114 |
|
DO16(buf); |
115 |
|
buf += 16; |
116 |
|
} |
117 |
|
while (len--) { |
118 |
|
adler += *buf++; |
119 |
|
sum2 += adler; |
120 |
|
} |
121 |
|
MOD(adler); |
122 |
|
MOD(sum2); |
123 |
|
} |
124 |
|
|
125 |
|
/* return recombined sums */ |
126 |
|
return adler | (sum2 << 16); |
127 |
|
} |
128 |
|
|
129 |
|
/* ========================================================================= */ |
130 |
|
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) { |
131 |
|
return adler32_z(adler, buf, len); |
132 |
|
} |
133 |
|
|
134 |
|
/* ========================================================================= */ |
135 |
|
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) { |
136 |
|
unsigned long sum1; |
137 |
|
unsigned long sum2; |
138 |
|
unsigned rem; |
139 |
|
|
140 |
|
/* for negative len, return invalid adler32 as a clue for debugging */ |
141 |
|
if (len2 < 0) |
142 |
|
return 0xffffffffUL; |
143 |
|
|
144 |
|
/* the derivation of this formula is left as an exercise for the reader */ |
145 |
|
MOD63(len2); /* assumes len2 >= 0 */ |
146 |
|
rem = (unsigned)len2; |
147 |
|
sum1 = adler1 & 0xffff; |
148 |
|
sum2 = rem * sum1; |
149 |
|
MOD(sum2); |
150 |
|
sum1 += (adler2 & 0xffff) + BASE - 1; |
151 |
|
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; |
152 |
|
if (sum1 >= BASE) sum1 -= BASE; |
153 |
|
if (sum1 >= BASE) sum1 -= BASE; |
154 |
|
if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1); |
155 |
|
if (sum2 >= BASE) sum2 -= BASE; |
156 |
|
return sum1 | (sum2 << 16); |
157 |
|
} |
158 |
|
|
159 |
|
/* ========================================================================= */ |
160 |
|
uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) { |
161 |
|
return adler32_combine_(adler1, adler2, len2); |
162 |
|
} |
163 |
|
|
164 |
|
uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) { |
165 |
|
return adler32_combine_(adler1, adler2, len2); |
166 |
|
} |
167 |
|
#else /* NOVGZ */ |
168 |
0 |
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) { |
169 |
0 |
(void)adler; |
170 |
0 |
(void)buf; |
171 |
0 |
(void)len; |
172 |
0 |
abort(); |
173 |
|
} |
174 |
|
#endif /* NOVGZ */ |