| | varnish-cache/lib/libvgz/trees.c |
0 |
|
/* trees.c -- output deflated data using Huffman coding |
1 |
|
* Copyright (C) 1995-2024 Jean-loup Gailly |
2 |
|
* detect_data_type() function provided freely by Cosmin Truta, 2006 |
3 |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
4 |
|
*/ |
5 |
|
|
6 |
|
/* |
7 |
|
* ALGORITHM |
8 |
|
* |
9 |
|
* The "deflation" process uses several Huffman trees. The more |
10 |
|
* common source values are represented by shorter bit sequences. |
11 |
|
* |
12 |
|
* Each code tree is stored in a compressed form which is itself |
13 |
|
* a Huffman encoding of the lengths of all the code strings (in |
14 |
|
* ascending order by source values). The actual code strings are |
15 |
|
* reconstructed from the lengths in the inflate process, as described |
16 |
|
* in the deflate specification. |
17 |
|
* |
18 |
|
* REFERENCES |
19 |
|
* |
20 |
|
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
21 |
|
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
22 |
|
* |
23 |
|
* Storer, James A. |
24 |
|
* Data Compression: Methods and Theory, pp. 49-50. |
25 |
|
* Computer Science Press, 1988. ISBN 0-7167-8156-5. |
26 |
|
* |
27 |
|
* Sedgewick, R. |
28 |
|
* Algorithms, p290. |
29 |
|
* Addison-Wesley, 1983. ISBN 0-201-06672-6. |
30 |
|
*/ |
31 |
|
|
32 |
|
/* @(#) $Id$ */ |
33 |
|
|
34 |
|
/* #define GEN_TREES_H */ |
35 |
|
|
36 |
|
#include "deflate.h" |
37 |
|
|
38 |
|
#ifdef ZLIB_DEBUG |
39 |
|
# include <ctype.h> |
40 |
|
#endif |
41 |
|
|
42 |
|
/* =========================================================================== |
43 |
|
* Constants |
44 |
|
*/ |
45 |
|
|
46 |
|
#define MAX_BL_BITS 7 |
47 |
|
/* Bit length codes must not exceed MAX_BL_BITS bits */ |
48 |
|
|
49 |
|
#define END_BLOCK 256 |
50 |
|
/* end of block literal code */ |
51 |
|
|
52 |
|
#define REP_3_6 16 |
53 |
|
/* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
54 |
|
|
55 |
|
#define REPZ_3_10 17 |
56 |
|
/* repeat a zero length 3-10 times (3 bits of repeat count) */ |
57 |
|
|
58 |
|
#define REPZ_11_138 18 |
59 |
|
/* repeat a zero length 11-138 times (7 bits of repeat count) */ |
60 |
|
|
61 |
|
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ |
62 |
|
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
63 |
|
|
64 |
|
local const int extra_dbits[D_CODES] /* extra bits for each distance code */ |
65 |
|
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
66 |
|
|
67 |
|
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ |
68 |
|
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
69 |
|
|
70 |
|
local const uch bl_order[BL_CODES] |
71 |
|
= {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
72 |
|
/* The lengths of the bit length codes are sent in order of decreasing |
73 |
|
* probability, to avoid transmitting the lengths for unused bit length codes. |
74 |
|
*/ |
75 |
|
|
76 |
|
/* =========================================================================== |
77 |
|
* Local data. These are initialized only once. |
78 |
|
*/ |
79 |
|
|
80 |
|
#define DIST_CODE_LEN 512 /* see definition of array dist_code below */ |
81 |
|
|
82 |
|
#if defined(GEN_TREES_H) || !defined(STDC) |
83 |
|
/* non ANSI compilers may not accept trees.h */ |
84 |
|
|
85 |
|
local ct_data static_ltree[L_CODES+2]; |
86 |
|
/* The static literal tree. Since the bit lengths are imposed, there is no |
87 |
|
* need for the L_CODES extra codes used during heap construction. However |
88 |
|
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
89 |
|
* below). |
90 |
|
*/ |
91 |
|
|
92 |
|
local ct_data static_dtree[D_CODES]; |
93 |
|
/* The static distance tree. (Actually a trivial tree since all codes use |
94 |
|
* 5 bits.) |
95 |
|
*/ |
96 |
|
|
97 |
|
uch _dist_code[DIST_CODE_LEN]; |
98 |
|
/* Distance codes. The first 256 values correspond to the distances |
99 |
|
* 3 .. 258, the last 256 values correspond to the top 8 bits of |
100 |
|
* the 15 bit distances. |
101 |
|
*/ |
102 |
|
|
103 |
|
uch _length_code[MAX_MATCH-MIN_MATCH+1]; |
104 |
|
/* length code for each normalized match length (0 == MIN_MATCH) */ |
105 |
|
|
106 |
|
local int base_length[LENGTH_CODES]; |
107 |
|
/* First normalized length for each code (0 = MIN_MATCH) */ |
108 |
|
|
109 |
|
local int base_dist[D_CODES]; |
110 |
|
/* First normalized distance for each code (0 = distance of 1) */ |
111 |
|
|
112 |
|
#else |
113 |
|
# include "trees.h" |
114 |
|
#endif /* GEN_TREES_H */ |
115 |
|
|
116 |
|
struct static_tree_desc_s { |
117 |
|
const ct_data *static_tree; /* static tree or NULL */ |
118 |
|
const intf *extra_bits; /* extra bits for each code or NULL */ |
119 |
|
int extra_base; /* base index for extra_bits */ |
120 |
|
int elems; /* max number of elements in the tree */ |
121 |
|
int max_length; /* max bit length for the codes */ |
122 |
|
}; |
123 |
|
|
124 |
|
#ifdef NO_INIT_GLOBAL_POINTERS |
125 |
|
# define TCONST |
126 |
|
#else |
127 |
|
# define TCONST const |
128 |
|
#endif |
129 |
|
|
130 |
|
local TCONST static_tree_desc static_l_desc = |
131 |
|
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
132 |
|
|
133 |
|
local TCONST static_tree_desc static_d_desc = |
134 |
|
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
135 |
|
|
136 |
|
local TCONST static_tree_desc static_bl_desc = |
137 |
|
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
138 |
|
|
139 |
|
/* =========================================================================== |
140 |
|
* Output a short LSB first on the stream. |
141 |
|
* IN assertion: there is enough room in pendingBuf. |
142 |
|
*/ |
143 |
|
#define put_short(s, w) { \ |
144 |
|
put_byte(s, (uch)((w) & 0xff)); \ |
145 |
|
put_byte(s, (uch)((ush)(w) >> 8)); \ |
146 |
|
} |
147 |
|
|
148 |
|
/* =========================================================================== |
149 |
|
* Reverse the first len bits of a code, using straightforward code (a faster |
150 |
|
* method would use a table) |
151 |
|
* IN assertion: 1 <= len <= 15 |
152 |
|
*/ |
153 |
271785 |
local unsigned bi_reverse(unsigned code, int len) { |
154 |
271785 |
register unsigned res = 0; |
155 |
271785 |
do { |
156 |
1202726 |
res |= code & 1; |
157 |
1202726 |
code >>= 1, res <<= 1; |
158 |
1202726 |
} while (--len > 0); |
159 |
271785 |
return res >> 1; |
160 |
|
} |
161 |
|
|
162 |
|
/* =========================================================================== |
163 |
|
* Flush the bit buffer, keeping at most 7 bits in it. |
164 |
|
*/ |
165 |
56680 |
local void bi_flush(deflate_state *s) { |
166 |
56680 |
if (s->bi_valid == 16) { |
167 |
245 |
put_short(s, s->bi_buf); |
168 |
245 |
s->bi_buf = 0; |
169 |
245 |
s->bi_valid = 0; |
170 |
56680 |
} else if (s->bi_valid >= 8) { |
171 |
3149 |
put_byte(s, (Byte)s->bi_buf); |
172 |
3149 |
s->bi_buf >>= 8; |
173 |
3149 |
s->bi_valid -= 8; |
174 |
3149 |
} |
175 |
56680 |
} |
176 |
|
|
177 |
|
/* =========================================================================== |
178 |
|
* Flush the bit buffer and align the output on a byte boundary |
179 |
|
*/ |
180 |
23800 |
local void bi_windup(deflate_state *s) { |
181 |
23800 |
if (s->bi_valid > 8) { |
182 |
3494 |
put_short(s, s->bi_buf); |
183 |
23800 |
} else if (s->bi_valid > 0) { |
184 |
20306 |
put_byte(s, (Byte)s->bi_buf); |
185 |
20306 |
} |
186 |
23800 |
s->bi_used = ((s->bi_valid - 1) & 7) + 1; |
187 |
23800 |
s->bi_buf = 0; |
188 |
23800 |
s->bi_valid = 0; |
189 |
|
#ifdef ZLIB_DEBUG |
190 |
|
s->bits_sent = (s->bits_sent+7) & ~7; |
191 |
|
#endif |
192 |
23800 |
} |
193 |
|
|
194 |
|
/* =========================================================================== |
195 |
|
* Generate the codes for a given tree and bit counts (which need not be |
196 |
|
* optimal). |
197 |
|
* IN assertion: the array bl_count contains the bit length statistics for |
198 |
|
* the given tree and the field len is set for all tree elements. |
199 |
|
* OUT assertion: the field code is set for all tree elements of non |
200 |
|
* zero code length. |
201 |
|
*/ |
202 |
31800 |
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) { |
203 |
|
ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
204 |
31800 |
unsigned code = 0; /* running code value */ |
205 |
|
int bits; /* bit index */ |
206 |
|
int n; /* code index */ |
207 |
|
|
208 |
|
/* The distribution counts are first used to generate the code values |
209 |
|
* without bit reversal. |
210 |
|
*/ |
211 |
508800 |
for (bits = 1; bits <= MAX_BITS; bits++) { |
212 |
477000 |
code = (code + bl_count[bits-1]) << 1; |
213 |
477000 |
next_code[bits] = (ush)code; |
214 |
477000 |
} |
215 |
|
/* Check that the bit counts in bl_count are consistent. The last code |
216 |
|
* must be all ones. |
217 |
|
*/ |
218 |
|
Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
219 |
|
"inconsistent bit counts"); |
220 |
|
Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
221 |
|
|
222 |
3015240 |
for (n = 0; n <= max_code; n++) { |
223 |
2983440 |
int len = tree[n].Len; |
224 |
2983440 |
if (len == 0) continue; |
225 |
|
/* Now reverse the bits */ |
226 |
271785 |
tree[n].Code = (ush)bi_reverse(next_code[len]++, len); |
227 |
|
|
228 |
|
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
229 |
|
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
230 |
271785 |
} |
231 |
31800 |
} |
232 |
|
|
233 |
|
#ifdef GEN_TREES_H |
234 |
|
local void gen_trees_header (void); |
235 |
|
#endif |
236 |
|
|
237 |
|
#ifndef ZLIB_DEBUG |
238 |
|
# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
239 |
|
/* Send a code of the given tree. c and tree must not have side effects */ |
240 |
|
|
241 |
|
#else /* !ZLIB_DEBUG */ |
242 |
|
# define send_code(s, c, tree) \ |
243 |
|
{ if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
244 |
|
send_bits(s, tree[c].Code, tree[c].Len); } |
245 |
|
#endif |
246 |
|
|
247 |
|
/* =========================================================================== |
248 |
|
* Send a value on a given number of bits. |
249 |
|
* IN assertion: length <= 16 and value fits in length bits. |
250 |
|
*/ |
251 |
|
#ifdef ZLIB_DEBUG |
252 |
|
local void send_bits(deflate_state *s, int value, int length) { |
253 |
|
Tracevv((stderr," l %2d v %4x ", length, value)); |
254 |
|
Assert(length > 0 && length <= 15, "invalid length"); |
255 |
|
s->bits_sent += (ulg)length; |
256 |
|
|
257 |
|
/* If not enough room in bi_buf, use (valid) bits from bi_buf and |
258 |
|
* (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
259 |
|
* unused bits in value. |
260 |
|
*/ |
261 |
|
if (s->bi_valid > (int)Buf_size - length) { |
262 |
|
s->bi_buf |= (ush)value << s->bi_valid; |
263 |
|
put_short(s, s->bi_buf); |
264 |
|
s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
265 |
|
s->bi_valid += length - Buf_size; |
266 |
|
} else { |
267 |
|
s->bi_buf |= (ush)value << s->bi_valid; |
268 |
|
s->bi_valid += length; |
269 |
|
} |
270 |
|
} |
271 |
|
#else /* !ZLIB_DEBUG */ |
272 |
|
|
273 |
|
#define send_bits(s, value, length) \ |
274 |
|
{ int len = length;\ |
275 |
|
if (s->bi_valid > (int)Buf_size - len) {\ |
276 |
|
int val = (int)value;\ |
277 |
|
s->bi_buf |= (ush)val << s->bi_valid;\ |
278 |
|
put_short(s, s->bi_buf);\ |
279 |
|
s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
280 |
|
s->bi_valid += len - Buf_size;\ |
281 |
|
} else {\ |
282 |
|
s->bi_buf |= (ush)(value) << s->bi_valid;\ |
283 |
|
s->bi_valid += len;\ |
284 |
|
}\ |
285 |
|
} |
286 |
|
#endif /* ZLIB_DEBUG */ |
287 |
|
|
288 |
|
|
289 |
|
/* the arguments must not have side effects */ |
290 |
|
|
291 |
|
/* =========================================================================== |
292 |
|
* Initialize the various 'constant' tables. |
293 |
|
*/ |
294 |
10280 |
local void tr_static_init(void) { |
295 |
|
#if defined(GEN_TREES_H) || !defined(STDC) |
296 |
|
static int static_init_done = 0; |
297 |
|
int n; /* iterates over tree elements */ |
298 |
|
int bits; /* bit counter */ |
299 |
|
int length; /* length value */ |
300 |
|
int code; /* code value */ |
301 |
|
int dist; /* distance index */ |
302 |
|
ush bl_count[MAX_BITS+1]; |
303 |
|
/* number of codes at each bit length for an optimal tree */ |
304 |
|
|
305 |
|
if (static_init_done) return; |
306 |
|
|
307 |
|
/* For some embedded targets, global variables are not initialized: */ |
308 |
|
#ifdef NO_INIT_GLOBAL_POINTERS |
309 |
|
static_l_desc.static_tree = static_ltree; |
310 |
|
static_l_desc.extra_bits = extra_lbits; |
311 |
|
static_d_desc.static_tree = static_dtree; |
312 |
|
static_d_desc.extra_bits = extra_dbits; |
313 |
|
static_bl_desc.extra_bits = extra_blbits; |
314 |
|
#endif |
315 |
|
|
316 |
|
/* Initialize the mapping length (0..255) -> length code (0..28) */ |
317 |
|
length = 0; |
318 |
|
for (code = 0; code < LENGTH_CODES-1; code++) { |
319 |
|
base_length[code] = length; |
320 |
|
for (n = 0; n < (1<<extra_lbits[code]); n++) { |
321 |
|
_length_code[length++] = (uch)code; |
322 |
|
} |
323 |
|
} |
324 |
|
Assert (length == 256, "tr_static_init: length != 256"); |
325 |
|
/* Note that the length 255 (match length 258) can be represented |
326 |
|
* in two different ways: code 284 + 5 bits or code 285, so we |
327 |
|
* overwrite length_code[255] to use the best encoding: |
328 |
|
*/ |
329 |
|
_length_code[length-1] = (uch)code; |
330 |
|
|
331 |
|
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
332 |
|
dist = 0; |
333 |
|
for (code = 0 ; code < 16; code++) { |
334 |
|
base_dist[code] = dist; |
335 |
|
for (n = 0; n < (1<<extra_dbits[code]); n++) { |
336 |
|
_dist_code[dist++] = (uch)code; |
337 |
|
} |
338 |
|
} |
339 |
|
Assert (dist == 256, "tr_static_init: dist != 256"); |
340 |
|
dist >>= 7; /* from now on, all distances are divided by 128 */ |
341 |
|
for ( ; code < D_CODES; code++) { |
342 |
|
base_dist[code] = dist << 7; |
343 |
|
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
344 |
|
_dist_code[256 + dist++] = (uch)code; |
345 |
|
} |
346 |
|
} |
347 |
|
Assert (dist == 256, "tr_static_init: 256+dist != 512"); |
348 |
|
|
349 |
|
/* Construct the codes of the static literal tree */ |
350 |
|
for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
351 |
|
n = 0; |
352 |
|
while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
353 |
|
while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
354 |
|
while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
355 |
|
while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
356 |
|
/* Codes 286 and 287 do not exist, but we must include them in the |
357 |
|
* tree construction to get a canonical Huffman tree (longest code |
358 |
|
* all ones) |
359 |
|
*/ |
360 |
|
gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
361 |
|
|
362 |
|
/* The static distance tree is trivial: */ |
363 |
|
for (n = 0; n < D_CODES; n++) { |
364 |
|
static_dtree[n].Len = 5; |
365 |
|
static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
366 |
|
} |
367 |
|
static_init_done = 1; |
368 |
|
|
369 |
|
# ifdef GEN_TREES_H |
370 |
|
gen_trees_header(); |
371 |
|
# endif |
372 |
|
#endif /* defined(GEN_TREES_H) || !defined(STDC) */ |
373 |
10280 |
} |
374 |
|
|
375 |
|
/* =========================================================================== |
376 |
|
* Generate the file trees.h describing the static trees. |
377 |
|
*/ |
378 |
|
#ifdef GEN_TREES_H |
379 |
|
# ifndef ZLIB_DEBUG |
380 |
|
# include <stdio.h> |
381 |
|
# endif |
382 |
|
|
383 |
|
# define SEPARATOR(i, last, width) \ |
384 |
|
((i) == (last)? "\n};\n\n" : \ |
385 |
|
((i) % (width) == (width)-1 ? ",\n" : ", ")) |
386 |
|
|
387 |
|
void gen_trees_header(void) { |
388 |
|
FILE *header = fopen("trees.h", "w"); |
389 |
|
int i; |
390 |
|
|
391 |
|
Assert (header != NULL, "Can't open trees.h"); |
392 |
|
fprintf(header, |
393 |
|
"/* header created automatically with -DGEN_TREES_H */\n\n"); |
394 |
|
|
395 |
|
fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); |
396 |
|
for (i = 0; i < L_CODES+2; i++) { |
397 |
|
fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, |
398 |
|
static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); |
399 |
|
} |
400 |
|
|
401 |
|
fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); |
402 |
|
for (i = 0; i < D_CODES; i++) { |
403 |
|
fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, |
404 |
|
static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); |
405 |
|
} |
406 |
|
|
407 |
|
fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); |
408 |
|
for (i = 0; i < DIST_CODE_LEN; i++) { |
409 |
|
fprintf(header, "%2u%s", _dist_code[i], |
410 |
|
SEPARATOR(i, DIST_CODE_LEN-1, 20)); |
411 |
|
} |
412 |
|
|
413 |
|
fprintf(header, |
414 |
|
"const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); |
415 |
|
for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { |
416 |
|
fprintf(header, "%2u%s", _length_code[i], |
417 |
|
SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); |
418 |
|
} |
419 |
|
|
420 |
|
fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); |
421 |
|
for (i = 0; i < LENGTH_CODES; i++) { |
422 |
|
fprintf(header, "%1u%s", base_length[i], |
423 |
|
SEPARATOR(i, LENGTH_CODES-1, 20)); |
424 |
|
} |
425 |
|
|
426 |
|
fprintf(header, "local const int base_dist[D_CODES] = {\n"); |
427 |
|
for (i = 0; i < D_CODES; i++) { |
428 |
|
fprintf(header, "%5u%s", base_dist[i], |
429 |
|
SEPARATOR(i, D_CODES-1, 10)); |
430 |
|
} |
431 |
|
|
432 |
|
fclose(header); |
433 |
|
} |
434 |
|
#endif /* GEN_TREES_H */ |
435 |
|
|
436 |
|
/* =========================================================================== |
437 |
|
* Initialize a new block. |
438 |
|
*/ |
439 |
20880 |
local void init_block(deflate_state *s) { |
440 |
|
int n; /* iterates over tree elements */ |
441 |
|
|
442 |
|
/* Initialize the trees. */ |
443 |
5992560 |
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
444 |
647280 |
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
445 |
417600 |
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
446 |
|
|
447 |
20880 |
s->dyn_ltree[END_BLOCK].Freq = 1; |
448 |
20880 |
s->opt_len = s->static_len = 0L; |
449 |
20880 |
s->sym_next = s->matches = 0; |
450 |
20880 |
} |
451 |
|
|
452 |
|
/* =========================================================================== |
453 |
|
* Initialize the tree data structures for a new zlib stream. |
454 |
|
*/ |
455 |
10280 |
void ZLIB_INTERNAL _tr_init(deflate_state *s) { |
456 |
10280 |
tr_static_init(); |
457 |
|
|
458 |
10280 |
s->l_desc.dyn_tree = s->dyn_ltree; |
459 |
10280 |
s->l_desc.stat_desc = &static_l_desc; |
460 |
|
|
461 |
10280 |
s->d_desc.dyn_tree = s->dyn_dtree; |
462 |
10280 |
s->d_desc.stat_desc = &static_d_desc; |
463 |
|
|
464 |
10280 |
s->bl_desc.dyn_tree = s->bl_tree; |
465 |
10280 |
s->bl_desc.stat_desc = &static_bl_desc; |
466 |
|
|
467 |
10280 |
s->bi_buf = 0; |
468 |
10280 |
s->bi_valid = 0; |
469 |
10280 |
s->bi_used = 0; |
470 |
|
#ifdef ZLIB_DEBUG |
471 |
|
s->compressed_len = 0L; |
472 |
|
s->bits_sent = 0L; |
473 |
|
#endif |
474 |
|
|
475 |
|
/* Initialize the first block of the first file: */ |
476 |
10280 |
init_block(s); |
477 |
10280 |
} |
478 |
|
|
479 |
|
#define SMALLEST 1 |
480 |
|
/* Index within the heap array of least frequent node in the Huffman tree */ |
481 |
|
|
482 |
|
|
483 |
|
/* =========================================================================== |
484 |
|
* Remove the smallest element from the heap and recreate the heap with |
485 |
|
* one less element. Updates heap and heap_len. |
486 |
|
*/ |
487 |
|
#define pqremove(s, tree, top) \ |
488 |
|
{\ |
489 |
|
top = s->heap[SMALLEST]; \ |
490 |
|
s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
491 |
|
pqdownheap(s, tree, SMALLEST); \ |
492 |
|
} |
493 |
|
|
494 |
|
/* =========================================================================== |
495 |
|
* Compares to subtrees, using the tree depth as tie breaker when |
496 |
|
* the subtrees have equal frequency. This minimizes the worst case length. |
497 |
|
*/ |
498 |
|
#define smaller(tree, n, m, depth) \ |
499 |
|
(tree[n].Freq < tree[m].Freq || \ |
500 |
|
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
501 |
|
|
502 |
|
/* =========================================================================== |
503 |
|
* Restore the heap property by moving down the tree starting at node k, |
504 |
|
* exchanging a node with the smallest of its two sons if necessary, stopping |
505 |
|
* when the heap property is re-established (each father smaller than its |
506 |
|
* two sons). |
507 |
|
*/ |
508 |
611985 |
local void pqdownheap(deflate_state *s, ct_data *tree, int k) { |
509 |
611985 |
int v = s->heap[k]; |
510 |
611985 |
int j = k << 1; /* left son of k */ |
511 |
1740924 |
while (j <= s->heap_len) { |
512 |
|
/* Set j to the smallest of the two sons: */ |
513 |
2006604 |
if (j < s->heap_len && |
514 |
1228453 |
smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
515 |
661476 |
j++; |
516 |
661476 |
} |
517 |
|
/* Exit if v is smaller than both sons */ |
518 |
1334992 |
if (smaller(tree, v, s->heap[j], s->depth)) break; |
519 |
|
|
520 |
|
/* Exchange v with the smallest son */ |
521 |
1128939 |
s->heap[k] = s->heap[j]; k = j; |
522 |
|
|
523 |
|
/* And continue down the tree, setting j to the left son of k */ |
524 |
1128939 |
j <<= 1; |
525 |
|
} |
526 |
611985 |
s->heap[k] = v; |
527 |
611985 |
} |
528 |
|
|
529 |
|
/* =========================================================================== |
530 |
|
* Compute the optimal bit lengths for a tree and update the total bit length |
531 |
|
* for the current block. |
532 |
|
* IN assertion: the fields freq and dad are set, heap[heap_max] and |
533 |
|
* above are the tree nodes sorted by increasing frequency. |
534 |
|
* OUT assertions: the field len is set to the optimal bit length, the |
535 |
|
* array bl_count contains the frequencies for each bit length. |
536 |
|
* The length opt_len is updated; static_len is also updated if stree is |
537 |
|
* not null. |
538 |
|
*/ |
539 |
31800 |
local void gen_bitlen(deflate_state *s, tree_desc *desc) { |
540 |
31800 |
ct_data *tree = desc->dyn_tree; |
541 |
31800 |
int max_code = desc->max_code; |
542 |
31800 |
const ct_data *stree = desc->stat_desc->static_tree; |
543 |
31800 |
const intf *extra = desc->stat_desc->extra_bits; |
544 |
31800 |
int base = desc->stat_desc->extra_base; |
545 |
31800 |
int max_length = desc->stat_desc->max_length; |
546 |
|
int h; /* heap index */ |
547 |
|
int n, m; /* iterate over the tree elements */ |
548 |
|
int bits; /* bit length */ |
549 |
|
int xbits; /* extra bits */ |
550 |
|
ush f; /* frequency */ |
551 |
31800 |
int overflow = 0; /* number of elements with bit length too large */ |
552 |
|
|
553 |
540600 |
for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
554 |
|
|
555 |
|
/* In a first pass, compute the optimal bit lengths (which may |
556 |
|
* overflow in the case of the bit length tree). |
557 |
|
*/ |
558 |
31800 |
tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
559 |
|
|
560 |
511770 |
for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
561 |
479970 |
n = s->heap[h]; |
562 |
479970 |
bits = tree[tree[n].Dad].Len + 1; |
563 |
479970 |
if (bits > max_length) bits = max_length, overflow++; |
564 |
479970 |
tree[n].Len = (ush)bits; |
565 |
|
/* We overwrite tree[n].Dad which is no longer needed */ |
566 |
|
|
567 |
479970 |
if (n > max_code) continue; /* not a leaf node */ |
568 |
|
|
569 |
271785 |
s->bl_count[bits]++; |
570 |
271785 |
xbits = 0; |
571 |
271785 |
if (n >= base) xbits = extra[n-base]; |
572 |
271785 |
f = tree[n].Freq; |
573 |
271785 |
s->opt_len += (ulg)f * (unsigned)(bits + xbits); |
574 |
271785 |
if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); |
575 |
271785 |
} |
576 |
31800 |
if (overflow == 0) return; |
577 |
|
|
578 |
|
Tracev((stderr,"\nbit length overflow\n")); |
579 |
|
/* This happens for example on obj2 and pic of the Calgary corpus */ |
580 |
|
|
581 |
|
/* Find the first bit length which could increase: */ |
582 |
0 |
do { |
583 |
0 |
bits = max_length-1; |
584 |
0 |
while (s->bl_count[bits] == 0) bits--; |
585 |
0 |
s->bl_count[bits]--; /* move one leaf down the tree */ |
586 |
0 |
s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
587 |
0 |
s->bl_count[max_length]--; |
588 |
|
/* The brother of the overflow item also moves one step up, |
589 |
|
* but this does not affect bl_count[max_length] |
590 |
|
*/ |
591 |
0 |
overflow -= 2; |
592 |
0 |
} while (overflow > 0); |
593 |
|
|
594 |
|
/* Now recompute all bit lengths, scanning in increasing frequency. |
595 |
|
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
596 |
|
* lengths instead of fixing only the wrong ones. This idea is taken |
597 |
|
* from 'ar' written by Haruhiko Okumura.) |
598 |
|
*/ |
599 |
0 |
for (bits = max_length; bits != 0; bits--) { |
600 |
0 |
n = s->bl_count[bits]; |
601 |
0 |
while (n != 0) { |
602 |
0 |
m = s->heap[--h]; |
603 |
0 |
if (m > max_code) continue; |
604 |
0 |
if ((unsigned) tree[m].Len != (unsigned) bits) { |
605 |
|
Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
606 |
0 |
s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; |
607 |
0 |
tree[m].Len = (ush)bits; |
608 |
0 |
} |
609 |
0 |
n--; |
610 |
|
} |
611 |
0 |
} |
612 |
31800 |
} |
613 |
|
|
614 |
|
#ifdef DUMP_BL_TREE |
615 |
|
# include <stdio.h> |
616 |
|
#endif |
617 |
|
|
618 |
|
/* =========================================================================== |
619 |
|
* Construct one Huffman tree and assigns the code bit strings and lengths. |
620 |
|
* Update the total bit length for the current block. |
621 |
|
* IN assertion: the field freq is set for all tree elements. |
622 |
|
* OUT assertions: the fields len and code are set to the optimal bit length |
623 |
|
* and corresponding code. The length opt_len is updated; static_len is |
624 |
|
* also updated if stree is not null. The field max_code is set. |
625 |
|
*/ |
626 |
31800 |
local void build_tree(deflate_state *s, tree_desc *desc) { |
627 |
31800 |
ct_data *tree = desc->dyn_tree; |
628 |
31800 |
const ct_data *stree = desc->stat_desc->static_tree; |
629 |
31800 |
int elems = desc->stat_desc->elems; |
630 |
|
int n, m; /* iterate over heap elements */ |
631 |
31800 |
int max_code = -1; /* largest code with non zero frequency */ |
632 |
|
int node; /* new node being created */ |
633 |
|
|
634 |
|
/* Construct the initial heap, with least frequent element in |
635 |
|
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
636 |
|
* heap[0] is not used. |
637 |
|
*/ |
638 |
31800 |
s->heap_len = 0, s->heap_max = HEAP_SIZE; |
639 |
|
|
640 |
3582800 |
for (n = 0; n < elems; n++) { |
641 |
3551000 |
if (tree[n].Freq != 0) { |
642 |
251171 |
s->heap[++(s->heap_len)] = max_code = n; |
643 |
251171 |
s->depth[n] = 0; |
644 |
251171 |
} else { |
645 |
3299829 |
tree[n].Len = 0; |
646 |
|
} |
647 |
3551000 |
} |
648 |
|
|
649 |
|
/* The pkzip format requires that at least one distance code exists, |
650 |
|
* and that at least one bit should be sent even if there is only one |
651 |
|
* possible code. So to avoid special checks later on we force at least |
652 |
|
* two codes of non zero frequency. |
653 |
|
*/ |
654 |
52414 |
while (s->heap_len < 2) { |
655 |
20614 |
node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
656 |
20614 |
tree[node].Freq = 1; |
657 |
20614 |
s->depth[node] = 0; |
658 |
20614 |
s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
659 |
|
/* node is 0 or 1 so it does not have extra bits */ |
660 |
|
} |
661 |
31800 |
desc->max_code = max_code; |
662 |
|
|
663 |
|
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
664 |
|
* establish sub-heaps of increasing lengths: |
665 |
|
*/ |
666 |
163815 |
for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
667 |
|
|
668 |
|
/* Construct the Huffman tree by repeatedly combining the least two |
669 |
|
* frequent nodes. |
670 |
|
*/ |
671 |
31800 |
node = elems; /* next internal node of the tree */ |
672 |
31800 |
do { |
673 |
239985 |
pqremove(s, tree, n); /* n = node of least frequency */ |
674 |
239985 |
m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
675 |
|
|
676 |
239985 |
s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
677 |
239985 |
s->heap[--(s->heap_max)] = m; |
678 |
|
|
679 |
|
/* Create a new node father of n and m */ |
680 |
239985 |
tree[node].Freq = tree[n].Freq + tree[m].Freq; |
681 |
239985 |
s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? |
682 |
239985 |
s->depth[n] : s->depth[m]) + 1); |
683 |
239985 |
tree[n].Dad = tree[m].Dad = (ush)node; |
684 |
|
#ifdef DUMP_BL_TREE |
685 |
|
if (tree == s->bl_tree) { |
686 |
|
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", |
687 |
|
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
688 |
|
} |
689 |
|
#endif |
690 |
|
/* and insert the new node in the heap */ |
691 |
239985 |
s->heap[SMALLEST] = node++; |
692 |
239985 |
pqdownheap(s, tree, SMALLEST); |
693 |
|
|
694 |
239985 |
} while (s->heap_len >= 2); |
695 |
|
|
696 |
31800 |
s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
697 |
|
|
698 |
|
/* At this point, the fields freq and dad are set. We can now |
699 |
|
* generate the bit lengths. |
700 |
|
*/ |
701 |
31800 |
gen_bitlen(s, (tree_desc *)desc); |
702 |
|
|
703 |
|
/* The field len is now set, we can generate the bit codes */ |
704 |
31800 |
gen_codes ((ct_data *)tree, max_code, s->bl_count); |
705 |
31800 |
} |
706 |
|
|
707 |
|
/* =========================================================================== |
708 |
|
* Scan a literal or distance tree to determine the frequencies of the codes |
709 |
|
* in the bit length tree. |
710 |
|
*/ |
711 |
21200 |
local void scan_tree(deflate_state *s, ct_data *tree, int max_code) { |
712 |
|
int n; /* iterates over all tree elements */ |
713 |
21200 |
int prevlen = -1; /* last emitted length */ |
714 |
|
int curlen; /* length of current code */ |
715 |
21200 |
int nextlen = tree[0].Len; /* length of next code */ |
716 |
21200 |
int count = 0; /* repeat count of the current code */ |
717 |
21200 |
int max_count = 7; /* max repeat count */ |
718 |
21200 |
int min_count = 4; /* min repeat count */ |
719 |
|
|
720 |
21200 |
if (nextlen == 0) max_count = 138, min_count = 3; |
721 |
21200 |
tree[max_code+1].Len = (ush)0xffff; /* guard */ |
722 |
|
|
723 |
2803240 |
for (n = 0; n <= max_code; n++) { |
724 |
2782040 |
curlen = nextlen; nextlen = tree[n+1].Len; |
725 |
2782040 |
if (++count < max_count && curlen == nextlen) { |
726 |
2529644 |
continue; |
727 |
252396 |
} else if (count < min_count) { |
728 |
197331 |
s->bl_tree[curlen].Freq += (ush)count; |
729 |
252396 |
} else if (curlen != 0) { |
730 |
4211 |
if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
731 |
4211 |
s->bl_tree[REP_3_6].Freq++; |
732 |
55065 |
} else if (count <= 10) { |
733 |
18913 |
s->bl_tree[REPZ_3_10].Freq++; |
734 |
18913 |
} else { |
735 |
31941 |
s->bl_tree[REPZ_11_138].Freq++; |
736 |
|
} |
737 |
252396 |
count = 0; prevlen = curlen; |
738 |
252396 |
if (nextlen == 0) { |
739 |
84736 |
max_count = 138, min_count = 3; |
740 |
252396 |
} else if (curlen == nextlen) { |
741 |
940 |
max_count = 6, min_count = 3; |
742 |
940 |
} else { |
743 |
166720 |
max_count = 7, min_count = 4; |
744 |
|
} |
745 |
252396 |
} |
746 |
21200 |
} |
747 |
|
|
748 |
|
/* =========================================================================== |
749 |
|
* Send a literal or distance tree in compressed form, using the codes in |
750 |
|
* bl_tree. |
751 |
|
*/ |
752 |
240 |
local void send_tree(deflate_state *s, ct_data *tree, int max_code) { |
753 |
|
int n; /* iterates over all tree elements */ |
754 |
240 |
int prevlen = -1; /* last emitted length */ |
755 |
|
int curlen; /* length of current code */ |
756 |
240 |
int nextlen = tree[0].Len; /* length of next code */ |
757 |
240 |
int count = 0; /* repeat count of the current code */ |
758 |
240 |
int max_count = 7; /* max repeat count */ |
759 |
240 |
int min_count = 4; /* min repeat count */ |
760 |
|
|
761 |
|
/* tree[max_code+1].Len = -1; */ /* guard already set */ |
762 |
240 |
if (nextlen == 0) max_count = 138, min_count = 3; |
763 |
|
|
764 |
33640 |
for (n = 0; n <= max_code; n++) { |
765 |
33400 |
curlen = nextlen; nextlen = tree[n+1].Len; |
766 |
33400 |
if (++count < max_count && curlen == nextlen) { |
767 |
28280 |
continue; |
768 |
5120 |
} else if (count < min_count) { |
769 |
4720 |
do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
770 |
|
|
771 |
5120 |
} else if (curlen != 0) { |
772 |
360 |
if (curlen != prevlen) { |
773 |
320 |
send_code(s, curlen, s->bl_tree); count--; |
774 |
320 |
} |
775 |
|
Assert(count >= 3 && count <= 6, " 3_6?"); |
776 |
360 |
send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
777 |
|
|
778 |
1360 |
} else if (count <= 10) { |
779 |
440 |
send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
780 |
|
|
781 |
440 |
} else { |
782 |
560 |
send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
783 |
|
} |
784 |
5120 |
count = 0; prevlen = curlen; |
785 |
5120 |
if (nextlen == 0) { |
786 |
1360 |
max_count = 138, min_count = 3; |
787 |
5120 |
} else if (curlen == nextlen) { |
788 |
80 |
max_count = 6, min_count = 3; |
789 |
80 |
} else { |
790 |
3680 |
max_count = 7, min_count = 4; |
791 |
|
} |
792 |
5120 |
} |
793 |
240 |
} |
794 |
|
|
795 |
|
/* =========================================================================== |
796 |
|
* Construct the Huffman tree for the bit lengths and return the index in |
797 |
|
* bl_order of the last bit length code to send. |
798 |
|
*/ |
799 |
10600 |
local int build_bl_tree(deflate_state *s) { |
800 |
|
int max_blindex; /* index of last bit length code of non zero freq */ |
801 |
|
|
802 |
|
/* Determine the bit length frequencies for literal and distance trees */ |
803 |
10600 |
scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
804 |
10600 |
scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
805 |
|
|
806 |
|
/* Build the bit length tree: */ |
807 |
10600 |
build_tree(s, (tree_desc *)(&(s->bl_desc))); |
808 |
|
/* opt_len now includes the length of the tree representations, except the |
809 |
|
* lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts. |
810 |
|
*/ |
811 |
|
|
812 |
|
/* Determine the number of bit length codes to send. The pkzip format |
813 |
|
* requires that at least 4 bit length codes be sent. (appnote.txt says |
814 |
|
* 3 but the actual value used is 4.) |
815 |
|
*/ |
816 |
21520 |
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
817 |
21520 |
if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
818 |
10920 |
} |
819 |
|
/* Update opt_len to include the bit length tree and counts */ |
820 |
10600 |
s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4; |
821 |
|
Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
822 |
|
s->opt_len, s->static_len)); |
823 |
|
|
824 |
10600 |
return max_blindex; |
825 |
|
} |
826 |
|
|
827 |
|
/* =========================================================================== |
828 |
|
* Send the header for a block using dynamic Huffman trees: the counts, the |
829 |
|
* lengths of the bit length codes, the literal tree and the distance tree. |
830 |
|
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
831 |
|
*/ |
832 |
120 |
local void send_all_trees(deflate_state *s, int lcodes, int dcodes, |
833 |
|
int blcodes) { |
834 |
|
int rank; /* index in bl_order */ |
835 |
|
|
836 |
|
Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
837 |
|
Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
838 |
|
"too many codes"); |
839 |
|
Tracev((stderr, "\nbl counts: ")); |
840 |
120 |
send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
841 |
120 |
send_bits(s, dcodes-1, 5); |
842 |
120 |
send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
843 |
2200 |
for (rank = 0; rank < blcodes; rank++) { |
844 |
|
Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
845 |
2080 |
send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
846 |
2080 |
} |
847 |
|
Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
848 |
|
|
849 |
120 |
send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
850 |
|
Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
851 |
|
|
852 |
120 |
send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
853 |
|
Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
854 |
120 |
} |
855 |
|
|
856 |
|
/* =========================================================================== |
857 |
|
* Send a stored block |
858 |
|
*/ |
859 |
20160 |
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, |
860 |
|
ulg stored_len, int last) { |
861 |
20160 |
if (last) |
862 |
6440 |
s->strm->last_bit = |
863 |
6440 |
(s->strm->total_out + s->pending) * 8 + s->bi_valid; |
864 |
|
|
865 |
20160 |
send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ |
866 |
20160 |
bi_windup(s); /* align on byte boundary */ |
867 |
20160 |
put_short(s, (ush)stored_len); |
868 |
20160 |
put_short(s, (ush)~stored_len); |
869 |
20160 |
if (stored_len) |
870 |
1600 |
zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); |
871 |
20160 |
s->pending += stored_len; |
872 |
|
#ifdef ZLIB_DEBUG |
873 |
|
s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
874 |
|
s->compressed_len += (stored_len + 4) << 3; |
875 |
|
s->bits_sent += 2*16; |
876 |
|
s->bits_sent += stored_len<<3; |
877 |
|
#endif |
878 |
20160 |
if (last) |
879 |
6440 |
s->strm->stop_bit = |
880 |
6440 |
(s->strm->total_out + s->pending) * 8 + s->bi_valid; |
881 |
20160 |
} |
882 |
|
|
883 |
|
/* =========================================================================== |
884 |
|
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits) |
885 |
|
*/ |
886 |
56680 |
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) { |
887 |
56680 |
bi_flush(s); |
888 |
56680 |
} |
889 |
|
|
890 |
|
/* =========================================================================== |
891 |
|
* Send one empty static block to give enough lookahead for inflate. |
892 |
|
* This takes 10 bits, of which 7 may remain in the bit buffer. |
893 |
|
*/ |
894 |
0 |
void ZLIB_INTERNAL _tr_align(deflate_state *s) { |
895 |
0 |
send_bits(s, STATIC_TREES<<1, 3); |
896 |
0 |
send_code(s, END_BLOCK, static_ltree); |
897 |
|
#ifdef ZLIB_DEBUG |
898 |
|
s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
899 |
|
#endif |
900 |
0 |
bi_flush(s); |
901 |
0 |
} |
902 |
|
|
903 |
|
/* =========================================================================== |
904 |
|
* Send the block data compressed using the given Huffman trees |
905 |
|
*/ |
906 |
10600 |
local void compress_block(deflate_state *s, const ct_data *ltree, |
907 |
|
const ct_data *dtree) { |
908 |
|
unsigned dist; /* distance of matched string */ |
909 |
|
int lc; /* match length or unmatched char (if dist == 0) */ |
910 |
10600 |
unsigned sx = 0; /* running index in symbol buffers */ |
911 |
|
unsigned code; /* the code to send */ |
912 |
|
int extra; /* number of extra bits to send */ |
913 |
|
|
914 |
10600 |
if (s->sym_next != 0) do { |
915 |
|
#ifdef LIT_MEM |
916 |
|
dist = s->d_buf[sx]; |
917 |
|
lc = s->l_buf[sx++]; |
918 |
|
#else |
919 |
288787 |
dist = s->sym_buf[sx++] & 0xff; |
920 |
288787 |
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; |
921 |
288787 |
lc = s->sym_buf[sx++]; |
922 |
|
#endif |
923 |
288787 |
if (dist == 0) { |
924 |
283143 |
send_code(s, lc, ltree); /* send a literal byte */ |
925 |
|
Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
926 |
283143 |
} else { |
927 |
|
/* Here, lc is the match length - MIN_MATCH */ |
928 |
5644 |
code = _length_code[lc]; |
929 |
5644 |
send_code(s, code + LITERALS + 1, ltree); /* send length code */ |
930 |
5644 |
extra = extra_lbits[code]; |
931 |
5644 |
if (extra != 0) { |
932 |
1480 |
lc -= base_length[code]; |
933 |
1480 |
send_bits(s, lc, extra); /* send the extra length bits */ |
934 |
1480 |
} |
935 |
5644 |
dist--; /* dist is now the match distance - 1 */ |
936 |
5644 |
code = d_code(dist); |
937 |
|
Assert (code < D_CODES, "bad d_code"); |
938 |
|
|
939 |
5644 |
send_code(s, code, dtree); /* send the distance code */ |
940 |
5644 |
extra = extra_dbits[code]; |
941 |
5644 |
if (extra != 0) { |
942 |
5004 |
dist -= (unsigned)base_dist[code]; |
943 |
5004 |
send_bits(s, dist, extra); /* send the extra distance bits */ |
944 |
5004 |
} |
945 |
|
} /* literal or match pair ? */ |
946 |
|
|
947 |
|
/* Check for no overlay of pending_buf on needed symbols */ |
948 |
|
#ifdef LIT_MEM |
949 |
|
Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow"); |
950 |
|
#else |
951 |
|
Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow"); |
952 |
|
#endif |
953 |
|
|
954 |
288787 |
} while (sx < s->sym_next); |
955 |
|
|
956 |
10600 |
send_code(s, END_BLOCK, ltree); |
957 |
10600 |
} |
958 |
|
|
959 |
|
/* =========================================================================== |
960 |
|
* Check if the data type is TEXT or BINARY, using the following algorithm: |
961 |
|
* - TEXT if the two conditions below are satisfied: |
962 |
|
* a) There are no non-portable control characters belonging to the |
963 |
|
* "block list" (0..6, 14..25, 28..31). |
964 |
|
* b) There is at least one printable character belonging to the |
965 |
|
* "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
966 |
|
* - BINARY otherwise. |
967 |
|
* - The following partially-portable control characters form a |
968 |
|
* "gray list" that is ignored in this detection algorithm: |
969 |
|
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
970 |
|
* IN assertion: the fields Freq of dyn_ltree are set. |
971 |
|
*/ |
972 |
3640 |
local int detect_data_type(deflate_state *s) { |
973 |
|
/* block_mask is the bit mask of block-listed bytes |
974 |
|
* set bits 0..6, 14..25, and 28..31 |
975 |
|
* 0xf3ffc07f = binary 11110011111111111100000001111111 |
976 |
|
*/ |
977 |
3640 |
unsigned long block_mask = 0xf3ffc07fUL; |
978 |
|
int n; |
979 |
|
|
980 |
|
/* Check for non-textual ("block-listed") bytes. */ |
981 |
120120 |
for (n = 0; n <= 31; n++, block_mask >>= 1) |
982 |
116480 |
if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0)) |
983 |
0 |
return Z_BINARY; |
984 |
|
|
985 |
|
/* Check for textual ("allow-listed") bytes. */ |
986 |
3640 |
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 |
987 |
3280 |
|| s->dyn_ltree[13].Freq != 0) |
988 |
800 |
return Z_TEXT; |
989 |
72040 |
for (n = 32; n < LITERALS; n++) |
990 |
72040 |
if (s->dyn_ltree[n].Freq != 0) |
991 |
2840 |
return Z_TEXT; |
992 |
|
|
993 |
|
/* There are no "block-listed" or "allow-listed" bytes: |
994 |
|
* this stream either is empty or has tolerated ("gray-listed") bytes only. |
995 |
|
*/ |
996 |
0 |
return Z_BINARY; |
997 |
3640 |
} |
998 |
|
|
999 |
|
/* =========================================================================== |
1000 |
|
* Determine the best encoding for the current block: dynamic trees, static |
1001 |
|
* trees or store, and write out the encoded block. |
1002 |
|
*/ |
1003 |
10600 |
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, |
1004 |
|
ulg stored_len, int last) { |
1005 |
|
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
1006 |
10600 |
int max_blindex = 0; /* index of last bit length code of non zero freq */ |
1007 |
|
|
1008 |
10600 |
if (last) |
1009 |
3640 |
s->strm->last_bit = |
1010 |
3640 |
(s->strm->total_out + s->pending) * 8 + s->bi_valid; |
1011 |
|
|
1012 |
|
/* Build the Huffman trees unless a stored block is forced */ |
1013 |
10600 |
if (s->level > 0) { |
1014 |
|
|
1015 |
|
/* Check if the file is binary or text */ |
1016 |
10600 |
if (s->strm->data_type == Z_UNKNOWN) |
1017 |
3640 |
s->strm->data_type = detect_data_type(s); |
1018 |
|
|
1019 |
|
/* Construct the literal and distance trees */ |
1020 |
10600 |
build_tree(s, (tree_desc *)(&(s->l_desc))); |
1021 |
|
Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
1022 |
|
s->static_len)); |
1023 |
|
|
1024 |
10600 |
build_tree(s, (tree_desc *)(&(s->d_desc))); |
1025 |
|
Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
1026 |
|
s->static_len)); |
1027 |
|
/* At this point, opt_len and static_len are the total bit lengths of |
1028 |
|
* the compressed block data, excluding the tree representations. |
1029 |
|
*/ |
1030 |
|
|
1031 |
|
/* Build the bit length tree for the above two trees, and get the index |
1032 |
|
* in bl_order of the last bit length code to send. |
1033 |
|
*/ |
1034 |
10600 |
max_blindex = build_bl_tree(s); |
1035 |
|
|
1036 |
|
/* Determine the best encoding. Compute the block lengths in bytes. */ |
1037 |
10600 |
opt_lenb = (s->opt_len+3+7)>>3; |
1038 |
10600 |
static_lenb = (s->static_len+3+7)>>3; |
1039 |
|
|
1040 |
|
Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
1041 |
|
opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
1042 |
|
s->sym_next / 3)); |
1043 |
|
|
1044 |
|
#ifndef FORCE_STATIC |
1045 |
10600 |
if (static_lenb <= opt_lenb || s->strategy == Z_FIXED) |
1046 |
|
#endif |
1047 |
10480 |
opt_lenb = static_lenb; |
1048 |
|
|
1049 |
10600 |
} else { |
1050 |
|
Assert(buf != (char*)0, "lost buf"); |
1051 |
0 |
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
1052 |
|
} |
1053 |
|
|
1054 |
|
#ifdef FORCE_STORED |
1055 |
|
if (buf != (char*)0) { /* force stored block */ |
1056 |
|
#else |
1057 |
10600 |
if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
1058 |
|
/* 4: two words for the lengths */ |
1059 |
|
#endif |
1060 |
|
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
1061 |
|
* Otherwise we can't have processed more than WSIZE input bytes since |
1062 |
|
* the last block flush, because compression would have been |
1063 |
|
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
1064 |
|
* transform a block into a stored block. |
1065 |
|
*/ |
1066 |
0 |
_tr_stored_block(s, buf, stored_len, last); |
1067 |
|
|
1068 |
10600 |
} else if (static_lenb == opt_lenb) { |
1069 |
10480 |
send_bits(s, (STATIC_TREES<<1)+last, 3); |
1070 |
10480 |
compress_block(s, (const ct_data *)static_ltree, |
1071 |
|
(const ct_data *)static_dtree); |
1072 |
|
#ifdef ZLIB_DEBUG |
1073 |
|
s->compressed_len += 3 + s->static_len; |
1074 |
|
#endif |
1075 |
10480 |
} else { |
1076 |
120 |
send_bits(s, (DYN_TREES<<1)+last, 3); |
1077 |
240 |
send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
1078 |
120 |
max_blindex+1); |
1079 |
240 |
compress_block(s, (const ct_data *)s->dyn_ltree, |
1080 |
120 |
(const ct_data *)s->dyn_dtree); |
1081 |
|
#ifdef ZLIB_DEBUG |
1082 |
|
s->compressed_len += 3 + s->opt_len; |
1083 |
|
#endif |
1084 |
|
} |
1085 |
|
Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
1086 |
|
/* The above check is made mod 2^32, for files larger than 512 MB |
1087 |
|
* and uLong implemented on 32 bits. |
1088 |
|
*/ |
1089 |
10600 |
init_block(s); |
1090 |
|
|
1091 |
10600 |
if (last) { |
1092 |
3640 |
s->strm->stop_bit = |
1093 |
3640 |
(s->strm->total_out + s->pending) * 8 + s->bi_valid; |
1094 |
3640 |
bi_windup(s); |
1095 |
|
#ifdef ZLIB_DEBUG |
1096 |
|
s->compressed_len += 7; /* align on byte boundary */ |
1097 |
|
#endif |
1098 |
3640 |
} |
1099 |
|
Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
1100 |
|
s->compressed_len-7*last)); |
1101 |
10600 |
} |
1102 |
|
|
1103 |
|
/* =========================================================================== |
1104 |
|
* Save the match info and tally the frequency counts. Return true if |
1105 |
|
* the current block must be flushed. |
1106 |
|
*/ |
1107 |
0 |
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) { |
1108 |
|
#ifdef LIT_MEM |
1109 |
|
s->d_buf[s->sym_next] = (ush)dist; |
1110 |
|
s->l_buf[s->sym_next++] = (uch)lc; |
1111 |
|
#else |
1112 |
0 |
s->sym_buf[s->sym_next++] = (uch)dist; |
1113 |
0 |
s->sym_buf[s->sym_next++] = (uch)(dist >> 8); |
1114 |
0 |
s->sym_buf[s->sym_next++] = (uch)lc; |
1115 |
|
#endif |
1116 |
0 |
if (dist == 0) { |
1117 |
|
/* lc is the unmatched char */ |
1118 |
0 |
s->dyn_ltree[lc].Freq++; |
1119 |
0 |
} else { |
1120 |
0 |
s->matches++; |
1121 |
|
/* Here, lc is the match length - MIN_MATCH */ |
1122 |
0 |
dist--; /* dist = match distance - 1 */ |
1123 |
|
Assert((ush)dist < (ush)MAX_DIST(s) && |
1124 |
|
(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
1125 |
|
(ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); |
1126 |
|
|
1127 |
0 |
s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; |
1128 |
0 |
s->dyn_dtree[d_code(dist)].Freq++; |
1129 |
|
} |
1130 |
0 |
return (s->sym_next == s->sym_end); |
1131 |
|
} |