varnish-cache/lib/libvgz/trees.c
0
/* trees.c -- output deflated data using Huffman coding
1
 * Copyright (C) 1995-2024 Jean-loup Gailly
2
 * detect_data_type() function provided freely by Cosmin Truta, 2006
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process uses several Huffman trees. The more
10
 *      common source values are represented by shorter bit sequences.
11
 *
12
 *      Each code tree is stored in a compressed form which is itself
13
 * a Huffman encoding of the lengths of all the code strings (in
14
 * ascending order by source values).  The actual code strings are
15
 * reconstructed from the lengths in the inflate process, as described
16
 * in the deflate specification.
17
 *
18
 *  REFERENCES
19
 *
20
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22
 *
23
 *      Storer, James A.
24
 *          Data Compression:  Methods and Theory, pp. 49-50.
25
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
26
 *
27
 *      Sedgewick, R.
28
 *          Algorithms, p290.
29
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
30
 */
31
32
/* @(#) $Id$ */
33
34
/* #define GEN_TREES_H */
35
36
#include "deflate.h"
37
38
#ifdef ZLIB_DEBUG
39
#  include <ctype.h>
40
#endif
41
42
/* ===========================================================================
43
 * Constants
44
 */
45
46
#define MAX_BL_BITS 7
47
/* Bit length codes must not exceed MAX_BL_BITS bits */
48
49
#define END_BLOCK 256
50
/* end of block literal code */
51
52
#define REP_3_6      16
53
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
54
55
#define REPZ_3_10    17
56
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
57
58
#define REPZ_11_138  18
59
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
60
61
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63
64
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66
67
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69
70
local const uch bl_order[BL_CODES]
71
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72
/* The lengths of the bit length codes are sent in order of decreasing
73
 * probability, to avoid transmitting the lengths for unused bit length codes.
74
 */
75
76
/* ===========================================================================
77
 * Local data. These are initialized only once.
78
 */
79
80
#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
81
82
#if defined(GEN_TREES_H) || !defined(STDC)
83
/* non ANSI compilers may not accept trees.h */
84
85
local ct_data static_ltree[L_CODES+2];
86
/* The static literal tree. Since the bit lengths are imposed, there is no
87
 * need for the L_CODES extra codes used during heap construction. However
88
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
89
 * below).
90
 */
91
92
local ct_data static_dtree[D_CODES];
93
/* The static distance tree. (Actually a trivial tree since all codes use
94
 * 5 bits.)
95
 */
96
97
uch _dist_code[DIST_CODE_LEN];
98
/* Distance codes. The first 256 values correspond to the distances
99
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
100
 * the 15 bit distances.
101
 */
102
103
uch _length_code[MAX_MATCH-MIN_MATCH+1];
104
/* length code for each normalized match length (0 == MIN_MATCH) */
105
106
local int base_length[LENGTH_CODES];
107
/* First normalized length for each code (0 = MIN_MATCH) */
108
109
local int base_dist[D_CODES];
110
/* First normalized distance for each code (0 = distance of 1) */
111
112
#else
113
#  include "trees.h"
114
#endif /* GEN_TREES_H */
115
116
struct static_tree_desc_s {
117
    const ct_data *static_tree;  /* static tree or NULL */
118
    const intf *extra_bits;      /* extra bits for each code or NULL */
119
    int     extra_base;          /* base index for extra_bits */
120
    int     elems;               /* max number of elements in the tree */
121
    int     max_length;          /* max bit length for the codes */
122
};
123
124
#ifdef NO_INIT_GLOBAL_POINTERS
125
#  define TCONST
126
#else
127
#  define TCONST const
128
#endif
129
130
local TCONST static_tree_desc  static_l_desc =
131
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
132
133
local TCONST static_tree_desc  static_d_desc =
134
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
135
136
local TCONST static_tree_desc  static_bl_desc =
137
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
138
139
/* ===========================================================================
140
 * Output a short LSB first on the stream.
141
 * IN assertion: there is enough room in pendingBuf.
142
 */
143
#define put_short(s, w) { \
144
    put_byte(s, (uch)((w) & 0xff)); \
145
    put_byte(s, (uch)((ush)(w) >> 8)); \
146
}
147
148
/* ===========================================================================
149
 * Reverse the first len bits of a code, using straightforward code (a faster
150
 * method would use a table)
151
 * IN assertion: 1 <= len <= 15
152
 */
153 271785
local unsigned bi_reverse(unsigned code, int len) {
154 271785
    register unsigned res = 0;
155 271785
    do {
156 1202726
        res |= code & 1;
157 1202726
        code >>= 1, res <<= 1;
158 1202726
    } while (--len > 0);
159 271785
    return res >> 1;
160
}
161
162
/* ===========================================================================
163
 * Flush the bit buffer, keeping at most 7 bits in it.
164
 */
165 56680
local void bi_flush(deflate_state *s) {
166 56680
    if (s->bi_valid == 16) {
167 245
        put_short(s, s->bi_buf);
168 245
        s->bi_buf = 0;
169 245
        s->bi_valid = 0;
170 56680
    } else if (s->bi_valid >= 8) {
171 3149
        put_byte(s, (Byte)s->bi_buf);
172 3149
        s->bi_buf >>= 8;
173 3149
        s->bi_valid -= 8;
174 3149
    }
175 56680
}
176
177
/* ===========================================================================
178
 * Flush the bit buffer and align the output on a byte boundary
179
 */
180 23800
local void bi_windup(deflate_state *s) {
181 23800
    if (s->bi_valid > 8) {
182 3494
        put_short(s, s->bi_buf);
183 23800
    } else if (s->bi_valid > 0) {
184 20306
        put_byte(s, (Byte)s->bi_buf);
185 20306
    }
186 23800
    s->bi_used = ((s->bi_valid - 1) & 7) + 1;
187 23800
    s->bi_buf = 0;
188 23800
    s->bi_valid = 0;
189
#ifdef ZLIB_DEBUG
190
    s->bits_sent = (s->bits_sent+7) & ~7;
191
#endif
192 23800
}
193
194
/* ===========================================================================
195
 * Generate the codes for a given tree and bit counts (which need not be
196
 * optimal).
197
 * IN assertion: the array bl_count contains the bit length statistics for
198
 * the given tree and the field len is set for all tree elements.
199
 * OUT assertion: the field code is set for all tree elements of non
200
 *     zero code length.
201
 */
202 31800
local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
203
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
204 31800
    unsigned code = 0;         /* running code value */
205
    int bits;                  /* bit index */
206
    int n;                     /* code index */
207
208
    /* The distribution counts are first used to generate the code values
209
     * without bit reversal.
210
     */
211 508800
    for (bits = 1; bits <= MAX_BITS; bits++) {
212 477000
        code = (code + bl_count[bits-1]) << 1;
213 477000
        next_code[bits] = (ush)code;
214 477000
    }
215
    /* Check that the bit counts in bl_count are consistent. The last code
216
     * must be all ones.
217
     */
218
    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
219
            "inconsistent bit counts");
220
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
221
222 3015240
    for (n = 0;  n <= max_code; n++) {
223 2983440
        int len = tree[n].Len;
224 2983440
        if (len == 0) continue;
225
        /* Now reverse the bits */
226 271785
        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
227
228
        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
229
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
230 271785
    }
231 31800
}
232
233
#ifdef GEN_TREES_H
234
local void gen_trees_header (void);
235
#endif
236
237
#ifndef ZLIB_DEBUG
238
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
239
   /* Send a code of the given tree. c and tree must not have side effects */
240
241
#else /* !ZLIB_DEBUG */
242
#  define send_code(s, c, tree) \
243
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
244
       send_bits(s, tree[c].Code, tree[c].Len); }
245
#endif
246
247
/* ===========================================================================
248
 * Send a value on a given number of bits.
249
 * IN assertion: length <= 16 and value fits in length bits.
250
 */
251
#ifdef ZLIB_DEBUG
252
local void send_bits(deflate_state *s, int value, int length) {
253
    Tracevv((stderr," l %2d v %4x ", length, value));
254
    Assert(length > 0 && length <= 15, "invalid length");
255
    s->bits_sent += (ulg)length;
256
257
    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
258
     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
259
     * unused bits in value.
260
     */
261
    if (s->bi_valid > (int)Buf_size - length) {
262
        s->bi_buf |= (ush)value << s->bi_valid;
263
        put_short(s, s->bi_buf);
264
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
265
        s->bi_valid += length - Buf_size;
266
    } else {
267
        s->bi_buf |= (ush)value << s->bi_valid;
268
        s->bi_valid += length;
269
    }
270
}
271
#else /* !ZLIB_DEBUG */
272
273
#define send_bits(s, value, length) \
274
{ int len = length;\
275
  if (s->bi_valid > (int)Buf_size - len) {\
276
    int val = (int)value;\
277
    s->bi_buf |= (ush)val << s->bi_valid;\
278
    put_short(s, s->bi_buf);\
279
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
280
    s->bi_valid += len - Buf_size;\
281
  } else {\
282
    s->bi_buf |= (ush)(value) << s->bi_valid;\
283
    s->bi_valid += len;\
284
  }\
285
}
286
#endif /* ZLIB_DEBUG */
287
288
289
/* the arguments must not have side effects */
290
291
/* ===========================================================================
292
 * Initialize the various 'constant' tables.
293
 */
294 10280
local void tr_static_init(void) {
295
#if defined(GEN_TREES_H) || !defined(STDC)
296
    static int static_init_done = 0;
297
    int n;        /* iterates over tree elements */
298
    int bits;     /* bit counter */
299
    int length;   /* length value */
300
    int code;     /* code value */
301
    int dist;     /* distance index */
302
    ush bl_count[MAX_BITS+1];
303
    /* number of codes at each bit length for an optimal tree */
304
305
    if (static_init_done) return;
306
307
    /* For some embedded targets, global variables are not initialized: */
308
#ifdef NO_INIT_GLOBAL_POINTERS
309
    static_l_desc.static_tree = static_ltree;
310
    static_l_desc.extra_bits = extra_lbits;
311
    static_d_desc.static_tree = static_dtree;
312
    static_d_desc.extra_bits = extra_dbits;
313
    static_bl_desc.extra_bits = extra_blbits;
314
#endif
315
316
    /* Initialize the mapping length (0..255) -> length code (0..28) */
317
    length = 0;
318
    for (code = 0; code < LENGTH_CODES-1; code++) {
319
        base_length[code] = length;
320
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
321
            _length_code[length++] = (uch)code;
322
        }
323
    }
324
    Assert (length == 256, "tr_static_init: length != 256");
325
    /* Note that the length 255 (match length 258) can be represented
326
     * in two different ways: code 284 + 5 bits or code 285, so we
327
     * overwrite length_code[255] to use the best encoding:
328
     */
329
    _length_code[length-1] = (uch)code;
330
331
    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
332
    dist = 0;
333
    for (code = 0 ; code < 16; code++) {
334
        base_dist[code] = dist;
335
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
336
            _dist_code[dist++] = (uch)code;
337
        }
338
    }
339
    Assert (dist == 256, "tr_static_init: dist != 256");
340
    dist >>= 7; /* from now on, all distances are divided by 128 */
341
    for ( ; code < D_CODES; code++) {
342
        base_dist[code] = dist << 7;
343
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
344
            _dist_code[256 + dist++] = (uch)code;
345
        }
346
    }
347
    Assert (dist == 256, "tr_static_init: 256+dist != 512");
348
349
    /* Construct the codes of the static literal tree */
350
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
351
    n = 0;
352
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
353
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
354
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
355
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
356
    /* Codes 286 and 287 do not exist, but we must include them in the
357
     * tree construction to get a canonical Huffman tree (longest code
358
     * all ones)
359
     */
360
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
361
362
    /* The static distance tree is trivial: */
363
    for (n = 0; n < D_CODES; n++) {
364
        static_dtree[n].Len = 5;
365
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
366
    }
367
    static_init_done = 1;
368
369
#  ifdef GEN_TREES_H
370
    gen_trees_header();
371
#  endif
372
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
373 10280
}
374
375
/* ===========================================================================
376
 * Generate the file trees.h describing the static trees.
377
 */
378
#ifdef GEN_TREES_H
379
#  ifndef ZLIB_DEBUG
380
#    include <stdio.h>
381
#  endif
382
383
#  define SEPARATOR(i, last, width) \
384
      ((i) == (last)? "\n};\n\n" :    \
385
       ((i) % (width) == (width)-1 ? ",\n" : ", "))
386
387
void gen_trees_header(void) {
388
    FILE *header = fopen("trees.h", "w");
389
    int i;
390
391
    Assert (header != NULL, "Can't open trees.h");
392
    fprintf(header,
393
            "/* header created automatically with -DGEN_TREES_H */\n\n");
394
395
    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
396
    for (i = 0; i < L_CODES+2; i++) {
397
        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
398
                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
399
    }
400
401
    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
402
    for (i = 0; i < D_CODES; i++) {
403
        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
404
                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
405
    }
406
407
    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
408
    for (i = 0; i < DIST_CODE_LEN; i++) {
409
        fprintf(header, "%2u%s", _dist_code[i],
410
                SEPARATOR(i, DIST_CODE_LEN-1, 20));
411
    }
412
413
    fprintf(header,
414
        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
415
    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
416
        fprintf(header, "%2u%s", _length_code[i],
417
                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
418
    }
419
420
    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
421
    for (i = 0; i < LENGTH_CODES; i++) {
422
        fprintf(header, "%1u%s", base_length[i],
423
                SEPARATOR(i, LENGTH_CODES-1, 20));
424
    }
425
426
    fprintf(header, "local const int base_dist[D_CODES] = {\n");
427
    for (i = 0; i < D_CODES; i++) {
428
        fprintf(header, "%5u%s", base_dist[i],
429
                SEPARATOR(i, D_CODES-1, 10));
430
    }
431
432
    fclose(header);
433
}
434
#endif /* GEN_TREES_H */
435
436
/* ===========================================================================
437
 * Initialize a new block.
438
 */
439 20880
local void init_block(deflate_state *s) {
440
    int n; /* iterates over tree elements */
441
442
    /* Initialize the trees. */
443 5992560
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
444 647280
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
445 417600
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
446
447 20880
    s->dyn_ltree[END_BLOCK].Freq = 1;
448 20880
    s->opt_len = s->static_len = 0L;
449 20880
    s->sym_next = s->matches = 0;
450 20880
}
451
452
/* ===========================================================================
453
 * Initialize the tree data structures for a new zlib stream.
454
 */
455 10280
void ZLIB_INTERNAL _tr_init(deflate_state *s) {
456 10280
    tr_static_init();
457
458 10280
    s->l_desc.dyn_tree = s->dyn_ltree;
459 10280
    s->l_desc.stat_desc = &static_l_desc;
460
461 10280
    s->d_desc.dyn_tree = s->dyn_dtree;
462 10280
    s->d_desc.stat_desc = &static_d_desc;
463
464 10280
    s->bl_desc.dyn_tree = s->bl_tree;
465 10280
    s->bl_desc.stat_desc = &static_bl_desc;
466
467 10280
    s->bi_buf = 0;
468 10280
    s->bi_valid = 0;
469 10280
    s->bi_used = 0;
470
#ifdef ZLIB_DEBUG
471
    s->compressed_len = 0L;
472
    s->bits_sent = 0L;
473
#endif
474
475
    /* Initialize the first block of the first file: */
476 10280
    init_block(s);
477 10280
}
478
479
#define SMALLEST 1
480
/* Index within the heap array of least frequent node in the Huffman tree */
481
482
483
/* ===========================================================================
484
 * Remove the smallest element from the heap and recreate the heap with
485
 * one less element. Updates heap and heap_len.
486
 */
487
#define pqremove(s, tree, top) \
488
{\
489
    top = s->heap[SMALLEST]; \
490
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
491
    pqdownheap(s, tree, SMALLEST); \
492
}
493
494
/* ===========================================================================
495
 * Compares to subtrees, using the tree depth as tie breaker when
496
 * the subtrees have equal frequency. This minimizes the worst case length.
497
 */
498
#define smaller(tree, n, m, depth) \
499
   (tree[n].Freq < tree[m].Freq || \
500
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
501
502
/* ===========================================================================
503
 * Restore the heap property by moving down the tree starting at node k,
504
 * exchanging a node with the smallest of its two sons if necessary, stopping
505
 * when the heap property is re-established (each father smaller than its
506
 * two sons).
507
 */
508 611985
local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
509 611985
    int v = s->heap[k];
510 611985
    int j = k << 1;  /* left son of k */
511 1740924
    while (j <= s->heap_len) {
512
        /* Set j to the smallest of the two sons: */
513 2006604
        if (j < s->heap_len &&
514 1228453
            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
515 661476
            j++;
516 661476
        }
517
        /* Exit if v is smaller than both sons */
518 1334992
        if (smaller(tree, v, s->heap[j], s->depth)) break;
519
520
        /* Exchange v with the smallest son */
521 1128939
        s->heap[k] = s->heap[j];  k = j;
522
523
        /* And continue down the tree, setting j to the left son of k */
524 1128939
        j <<= 1;
525
    }
526 611985
    s->heap[k] = v;
527 611985
}
528
529
/* ===========================================================================
530
 * Compute the optimal bit lengths for a tree and update the total bit length
531
 * for the current block.
532
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
533
 *    above are the tree nodes sorted by increasing frequency.
534
 * OUT assertions: the field len is set to the optimal bit length, the
535
 *     array bl_count contains the frequencies for each bit length.
536
 *     The length opt_len is updated; static_len is also updated if stree is
537
 *     not null.
538
 */
539 31800
local void gen_bitlen(deflate_state *s, tree_desc *desc) {
540 31800
    ct_data *tree        = desc->dyn_tree;
541 31800
    int max_code         = desc->max_code;
542 31800
    const ct_data *stree = desc->stat_desc->static_tree;
543 31800
    const intf *extra    = desc->stat_desc->extra_bits;
544 31800
    int base             = desc->stat_desc->extra_base;
545 31800
    int max_length       = desc->stat_desc->max_length;
546
    int h;              /* heap index */
547
    int n, m;           /* iterate over the tree elements */
548
    int bits;           /* bit length */
549
    int xbits;          /* extra bits */
550
    ush f;              /* frequency */
551 31800
    int overflow = 0;   /* number of elements with bit length too large */
552
553 540600
    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
554
555
    /* In a first pass, compute the optimal bit lengths (which may
556
     * overflow in the case of the bit length tree).
557
     */
558 31800
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
559
560 511770
    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
561 479970
        n = s->heap[h];
562 479970
        bits = tree[tree[n].Dad].Len + 1;
563 479970
        if (bits > max_length) bits = max_length, overflow++;
564 479970
        tree[n].Len = (ush)bits;
565
        /* We overwrite tree[n].Dad which is no longer needed */
566
567 479970
        if (n > max_code) continue; /* not a leaf node */
568
569 271785
        s->bl_count[bits]++;
570 271785
        xbits = 0;
571 271785
        if (n >= base) xbits = extra[n-base];
572 271785
        f = tree[n].Freq;
573 271785
        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
574 271785
        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
575 271785
    }
576 31800
    if (overflow == 0) return;
577
578
    Tracev((stderr,"\nbit length overflow\n"));
579
    /* This happens for example on obj2 and pic of the Calgary corpus */
580
581
    /* Find the first bit length which could increase: */
582 0
    do {
583 0
        bits = max_length-1;
584 0
        while (s->bl_count[bits] == 0) bits--;
585 0
        s->bl_count[bits]--;      /* move one leaf down the tree */
586 0
        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
587 0
        s->bl_count[max_length]--;
588
        /* The brother of the overflow item also moves one step up,
589
         * but this does not affect bl_count[max_length]
590
         */
591 0
        overflow -= 2;
592 0
    } while (overflow > 0);
593
594
    /* Now recompute all bit lengths, scanning in increasing frequency.
595
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
596
     * lengths instead of fixing only the wrong ones. This idea is taken
597
     * from 'ar' written by Haruhiko Okumura.)
598
     */
599 0
    for (bits = max_length; bits != 0; bits--) {
600 0
        n = s->bl_count[bits];
601 0
        while (n != 0) {
602 0
            m = s->heap[--h];
603 0
            if (m > max_code) continue;
604 0
            if ((unsigned) tree[m].Len != (unsigned) bits) {
605
                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
606 0
                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
607 0
                tree[m].Len = (ush)bits;
608 0
            }
609 0
            n--;
610
        }
611 0
    }
612 31800
}
613
614
#ifdef DUMP_BL_TREE
615
#  include <stdio.h>
616
#endif
617
618
/* ===========================================================================
619
 * Construct one Huffman tree and assigns the code bit strings and lengths.
620
 * Update the total bit length for the current block.
621
 * IN assertion: the field freq is set for all tree elements.
622
 * OUT assertions: the fields len and code are set to the optimal bit length
623
 *     and corresponding code. The length opt_len is updated; static_len is
624
 *     also updated if stree is not null. The field max_code is set.
625
 */
626 31800
local void build_tree(deflate_state *s, tree_desc *desc) {
627 31800
    ct_data *tree         = desc->dyn_tree;
628 31800
    const ct_data *stree  = desc->stat_desc->static_tree;
629 31800
    int elems             = desc->stat_desc->elems;
630
    int n, m;          /* iterate over heap elements */
631 31800
    int max_code = -1; /* largest code with non zero frequency */
632
    int node;          /* new node being created */
633
634
    /* Construct the initial heap, with least frequent element in
635
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
636
     * heap[0] is not used.
637
     */
638 31800
    s->heap_len = 0, s->heap_max = HEAP_SIZE;
639
640 3582800
    for (n = 0; n < elems; n++) {
641 3551000
        if (tree[n].Freq != 0) {
642 251171
            s->heap[++(s->heap_len)] = max_code = n;
643 251171
            s->depth[n] = 0;
644 251171
        } else {
645 3299829
            tree[n].Len = 0;
646
        }
647 3551000
    }
648
649
    /* The pkzip format requires that at least one distance code exists,
650
     * and that at least one bit should be sent even if there is only one
651
     * possible code. So to avoid special checks later on we force at least
652
     * two codes of non zero frequency.
653
     */
654 52414
    while (s->heap_len < 2) {
655 20614
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
656 20614
        tree[node].Freq = 1;
657 20614
        s->depth[node] = 0;
658 20614
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
659
        /* node is 0 or 1 so it does not have extra bits */
660
    }
661 31800
    desc->max_code = max_code;
662
663
    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
664
     * establish sub-heaps of increasing lengths:
665
     */
666 163815
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
667
668
    /* Construct the Huffman tree by repeatedly combining the least two
669
     * frequent nodes.
670
     */
671 31800
    node = elems;              /* next internal node of the tree */
672 31800
    do {
673 239985
        pqremove(s, tree, n);  /* n = node of least frequency */
674 239985
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
675
676 239985
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
677 239985
        s->heap[--(s->heap_max)] = m;
678
679
        /* Create a new node father of n and m */
680 239985
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
681 239985
        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
682 239985
                                s->depth[n] : s->depth[m]) + 1);
683 239985
        tree[n].Dad = tree[m].Dad = (ush)node;
684
#ifdef DUMP_BL_TREE
685
        if (tree == s->bl_tree) {
686
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
687
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
688
        }
689
#endif
690
        /* and insert the new node in the heap */
691 239985
        s->heap[SMALLEST] = node++;
692 239985
        pqdownheap(s, tree, SMALLEST);
693
694 239985
    } while (s->heap_len >= 2);
695
696 31800
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
697
698
    /* At this point, the fields freq and dad are set. We can now
699
     * generate the bit lengths.
700
     */
701 31800
    gen_bitlen(s, (tree_desc *)desc);
702
703
    /* The field len is now set, we can generate the bit codes */
704 31800
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
705 31800
}
706
707
/* ===========================================================================
708
 * Scan a literal or distance tree to determine the frequencies of the codes
709
 * in the bit length tree.
710
 */
711 21200
local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
712
    int n;                     /* iterates over all tree elements */
713 21200
    int prevlen = -1;          /* last emitted length */
714
    int curlen;                /* length of current code */
715 21200
    int nextlen = tree[0].Len; /* length of next code */
716 21200
    int count = 0;             /* repeat count of the current code */
717 21200
    int max_count = 7;         /* max repeat count */
718 21200
    int min_count = 4;         /* min repeat count */
719
720 21200
    if (nextlen == 0) max_count = 138, min_count = 3;
721 21200
    tree[max_code+1].Len = (ush)0xffff; /* guard */
722
723 2803240
    for (n = 0; n <= max_code; n++) {
724 2782040
        curlen = nextlen; nextlen = tree[n+1].Len;
725 2782040
        if (++count < max_count && curlen == nextlen) {
726 2529644
            continue;
727 252396
        } else if (count < min_count) {
728 197331
            s->bl_tree[curlen].Freq += (ush)count;
729 252396
        } else if (curlen != 0) {
730 4211
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
731 4211
            s->bl_tree[REP_3_6].Freq++;
732 55065
        } else if (count <= 10) {
733 18913
            s->bl_tree[REPZ_3_10].Freq++;
734 18913
        } else {
735 31941
            s->bl_tree[REPZ_11_138].Freq++;
736
        }
737 252396
        count = 0; prevlen = curlen;
738 252396
        if (nextlen == 0) {
739 84736
            max_count = 138, min_count = 3;
740 252396
        } else if (curlen == nextlen) {
741 940
            max_count = 6, min_count = 3;
742 940
        } else {
743 166720
            max_count = 7, min_count = 4;
744
        }
745 252396
    }
746 21200
}
747
748
/* ===========================================================================
749
 * Send a literal or distance tree in compressed form, using the codes in
750
 * bl_tree.
751
 */
752 240
local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
753
    int n;                     /* iterates over all tree elements */
754 240
    int prevlen = -1;          /* last emitted length */
755
    int curlen;                /* length of current code */
756 240
    int nextlen = tree[0].Len; /* length of next code */
757 240
    int count = 0;             /* repeat count of the current code */
758 240
    int max_count = 7;         /* max repeat count */
759 240
    int min_count = 4;         /* min repeat count */
760
761
    /* tree[max_code+1].Len = -1; */  /* guard already set */
762 240
    if (nextlen == 0) max_count = 138, min_count = 3;
763
764 33640
    for (n = 0; n <= max_code; n++) {
765 33400
        curlen = nextlen; nextlen = tree[n+1].Len;
766 33400
        if (++count < max_count && curlen == nextlen) {
767 28280
            continue;
768 5120
        } else if (count < min_count) {
769 4720
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
770
771 5120
        } else if (curlen != 0) {
772 360
            if (curlen != prevlen) {
773 320
                send_code(s, curlen, s->bl_tree); count--;
774 320
            }
775
            Assert(count >= 3 && count <= 6, " 3_6?");
776 360
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
777
778 1360
        } else if (count <= 10) {
779 440
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
780
781 440
        } else {
782 560
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
783
        }
784 5120
        count = 0; prevlen = curlen;
785 5120
        if (nextlen == 0) {
786 1360
            max_count = 138, min_count = 3;
787 5120
        } else if (curlen == nextlen) {
788 80
            max_count = 6, min_count = 3;
789 80
        } else {
790 3680
            max_count = 7, min_count = 4;
791
        }
792 5120
    }
793 240
}
794
795
/* ===========================================================================
796
 * Construct the Huffman tree for the bit lengths and return the index in
797
 * bl_order of the last bit length code to send.
798
 */
799 10600
local int build_bl_tree(deflate_state *s) {
800
    int max_blindex;  /* index of last bit length code of non zero freq */
801
802
    /* Determine the bit length frequencies for literal and distance trees */
803 10600
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
804 10600
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
805
806
    /* Build the bit length tree: */
807 10600
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
808
    /* opt_len now includes the length of the tree representations, except the
809
     * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
810
     */
811
812
    /* Determine the number of bit length codes to send. The pkzip format
813
     * requires that at least 4 bit length codes be sent. (appnote.txt says
814
     * 3 but the actual value used is 4.)
815
     */
816 21520
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
817 21520
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
818 10920
    }
819
    /* Update opt_len to include the bit length tree and counts */
820 10600
    s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
821
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
822
            s->opt_len, s->static_len));
823
824 10600
    return max_blindex;
825
}
826
827
/* ===========================================================================
828
 * Send the header for a block using dynamic Huffman trees: the counts, the
829
 * lengths of the bit length codes, the literal tree and the distance tree.
830
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
831
 */
832 120
local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
833
                          int blcodes) {
834
    int rank;                    /* index in bl_order */
835
836
    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
837
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
838
            "too many codes");
839
    Tracev((stderr, "\nbl counts: "));
840 120
    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
841 120
    send_bits(s, dcodes-1,   5);
842 120
    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
843 2200
    for (rank = 0; rank < blcodes; rank++) {
844
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
845 2080
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
846 2080
    }
847
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
848
849 120
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
850
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
851
852 120
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
853
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
854 120
}
855
856
/* ===========================================================================
857
 * Send a stored block
858
 */
859 20160
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
860
                                    ulg stored_len, int last) {
861 20160
    if (last)
862 6440
        s->strm->last_bit =
863 6440
           (s->strm->total_out + s->pending) * 8 + s->bi_valid;
864
865 20160
    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
866 20160
    bi_windup(s);        /* align on byte boundary */
867 20160
    put_short(s, (ush)stored_len);
868 20160
    put_short(s, (ush)~stored_len);
869 20160
    if (stored_len)
870 1600
        zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
871 20160
    s->pending += stored_len;
872
#ifdef ZLIB_DEBUG
873
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
874
    s->compressed_len += (stored_len + 4) << 3;
875
    s->bits_sent += 2*16;
876
    s->bits_sent += stored_len<<3;
877
#endif
878 20160
    if (last)
879 6440
        s->strm->stop_bit =
880 6440
           (s->strm->total_out + s->pending) * 8 + s->bi_valid;
881 20160
}
882
883
/* ===========================================================================
884
 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
885
 */
886 56680
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
887 56680
    bi_flush(s);
888 56680
}
889
890
/* ===========================================================================
891
 * Send one empty static block to give enough lookahead for inflate.
892
 * This takes 10 bits, of which 7 may remain in the bit buffer.
893
 */
894 0
void ZLIB_INTERNAL _tr_align(deflate_state *s) {
895 0
    send_bits(s, STATIC_TREES<<1, 3);
896 0
    send_code(s, END_BLOCK, static_ltree);
897
#ifdef ZLIB_DEBUG
898
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
899
#endif
900 0
    bi_flush(s);
901 0
}
902
903
/* ===========================================================================
904
 * Send the block data compressed using the given Huffman trees
905
 */
906 10600
local void compress_block(deflate_state *s, const ct_data *ltree,
907
                          const ct_data *dtree) {
908
    unsigned dist;      /* distance of matched string */
909
    int lc;             /* match length or unmatched char (if dist == 0) */
910 10600
    unsigned sx = 0;    /* running index in symbol buffers */
911
    unsigned code;      /* the code to send */
912
    int extra;          /* number of extra bits to send */
913
914 10600
    if (s->sym_next != 0) do {
915
#ifdef LIT_MEM
916
        dist = s->d_buf[sx];
917
        lc = s->l_buf[sx++];
918
#else
919 288787
        dist = s->sym_buf[sx++] & 0xff;
920 288787
        dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
921 288787
        lc = s->sym_buf[sx++];
922
#endif
923 288787
        if (dist == 0) {
924 283143
            send_code(s, lc, ltree); /* send a literal byte */
925
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
926 283143
        } else {
927
            /* Here, lc is the match length - MIN_MATCH */
928 5644
            code = _length_code[lc];
929 5644
            send_code(s, code + LITERALS + 1, ltree);   /* send length code */
930 5644
            extra = extra_lbits[code];
931 5644
            if (extra != 0) {
932 1480
                lc -= base_length[code];
933 1480
                send_bits(s, lc, extra);       /* send the extra length bits */
934 1480
            }
935 5644
            dist--; /* dist is now the match distance - 1 */
936 5644
            code = d_code(dist);
937
            Assert (code < D_CODES, "bad d_code");
938
939 5644
            send_code(s, code, dtree);       /* send the distance code */
940 5644
            extra = extra_dbits[code];
941 5644
            if (extra != 0) {
942 5004
                dist -= (unsigned)base_dist[code];
943 5004
                send_bits(s, dist, extra);   /* send the extra distance bits */
944 5004
            }
945
        } /* literal or match pair ? */
946
947
        /* Check for no overlay of pending_buf on needed symbols */
948
#ifdef LIT_MEM
949
        Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
950
#else
951
        Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
952
#endif
953
954 288787
    } while (sx < s->sym_next);
955
956 10600
    send_code(s, END_BLOCK, ltree);
957 10600
}
958
959
/* ===========================================================================
960
 * Check if the data type is TEXT or BINARY, using the following algorithm:
961
 * - TEXT if the two conditions below are satisfied:
962
 *    a) There are no non-portable control characters belonging to the
963
 *       "block list" (0..6, 14..25, 28..31).
964
 *    b) There is at least one printable character belonging to the
965
 *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
966
 * - BINARY otherwise.
967
 * - The following partially-portable control characters form a
968
 *   "gray list" that is ignored in this detection algorithm:
969
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
970
 * IN assertion: the fields Freq of dyn_ltree are set.
971
 */
972 3640
local int detect_data_type(deflate_state *s) {
973
    /* block_mask is the bit mask of block-listed bytes
974
     * set bits 0..6, 14..25, and 28..31
975
     * 0xf3ffc07f = binary 11110011111111111100000001111111
976
     */
977 3640
    unsigned long block_mask = 0xf3ffc07fUL;
978
    int n;
979
980
    /* Check for non-textual ("block-listed") bytes. */
981 120120
    for (n = 0; n <= 31; n++, block_mask >>= 1)
982 116480
        if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
983 0
            return Z_BINARY;
984
985
    /* Check for textual ("allow-listed") bytes. */
986 3640
    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
987 3280
            || s->dyn_ltree[13].Freq != 0)
988 800
        return Z_TEXT;
989 72040
    for (n = 32; n < LITERALS; n++)
990 72040
        if (s->dyn_ltree[n].Freq != 0)
991 2840
            return Z_TEXT;
992
993
    /* There are no "block-listed" or "allow-listed" bytes:
994
     * this stream either is empty or has tolerated ("gray-listed") bytes only.
995
     */
996 0
    return Z_BINARY;
997 3640
}
998
999
/* ===========================================================================
1000
 * Determine the best encoding for the current block: dynamic trees, static
1001
 * trees or store, and write out the encoded block.
1002
 */
1003 10600
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
1004
                                   ulg stored_len, int last) {
1005
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1006 10600
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
1007
1008 10600
    if (last)
1009 3640
        s->strm->last_bit =
1010 3640
           (s->strm->total_out + s->pending) * 8 + s->bi_valid;
1011
1012
    /* Build the Huffman trees unless a stored block is forced */
1013 10600
    if (s->level > 0) {
1014
1015
        /* Check if the file is binary or text */
1016 10600
        if (s->strm->data_type == Z_UNKNOWN)
1017 3640
            s->strm->data_type = detect_data_type(s);
1018
1019
        /* Construct the literal and distance trees */
1020 10600
        build_tree(s, (tree_desc *)(&(s->l_desc)));
1021
        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1022
                s->static_len));
1023
1024 10600
        build_tree(s, (tree_desc *)(&(s->d_desc)));
1025
        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1026
                s->static_len));
1027
        /* At this point, opt_len and static_len are the total bit lengths of
1028
         * the compressed block data, excluding the tree representations.
1029
         */
1030
1031
        /* Build the bit length tree for the above two trees, and get the index
1032
         * in bl_order of the last bit length code to send.
1033
         */
1034 10600
        max_blindex = build_bl_tree(s);
1035
1036
        /* Determine the best encoding. Compute the block lengths in bytes. */
1037 10600
        opt_lenb = (s->opt_len+3+7)>>3;
1038 10600
        static_lenb = (s->static_len+3+7)>>3;
1039
1040
        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1041
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1042
                s->sym_next / 3));
1043
1044
#ifndef FORCE_STATIC
1045 10600
        if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1046
#endif
1047 10480
            opt_lenb = static_lenb;
1048
1049 10600
    } else {
1050
        Assert(buf != (char*)0, "lost buf");
1051 0
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1052
    }
1053
1054
#ifdef FORCE_STORED
1055
    if (buf != (char*)0) { /* force stored block */
1056
#else
1057 10600
    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
1058
                       /* 4: two words for the lengths */
1059
#endif
1060
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1061
         * Otherwise we can't have processed more than WSIZE input bytes since
1062
         * the last block flush, because compression would have been
1063
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1064
         * transform a block into a stored block.
1065
         */
1066 0
        _tr_stored_block(s, buf, stored_len, last);
1067
1068 10600
    } else if (static_lenb == opt_lenb) {
1069 10480
        send_bits(s, (STATIC_TREES<<1)+last, 3);
1070 10480
        compress_block(s, (const ct_data *)static_ltree,
1071
                       (const ct_data *)static_dtree);
1072
#ifdef ZLIB_DEBUG
1073
        s->compressed_len += 3 + s->static_len;
1074
#endif
1075 10480
    } else {
1076 120
        send_bits(s, (DYN_TREES<<1)+last, 3);
1077 240
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1078 120
                       max_blindex+1);
1079 240
        compress_block(s, (const ct_data *)s->dyn_ltree,
1080 120
                       (const ct_data *)s->dyn_dtree);
1081
#ifdef ZLIB_DEBUG
1082
        s->compressed_len += 3 + s->opt_len;
1083
#endif
1084
    }
1085
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1086
    /* The above check is made mod 2^32, for files larger than 512 MB
1087
     * and uLong implemented on 32 bits.
1088
     */
1089 10600
    init_block(s);
1090
1091 10600
    if (last) {
1092 3640
        s->strm->stop_bit =
1093 3640
           (s->strm->total_out + s->pending) * 8 + s->bi_valid;
1094 3640
        bi_windup(s);
1095
#ifdef ZLIB_DEBUG
1096
        s->compressed_len += 7;  /* align on byte boundary */
1097
#endif
1098 3640
    }
1099
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1100
           s->compressed_len-7*last));
1101 10600
}
1102
1103
/* ===========================================================================
1104
 * Save the match info and tally the frequency counts. Return true if
1105
 * the current block must be flushed.
1106
 */
1107 0
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1108
#ifdef LIT_MEM
1109
    s->d_buf[s->sym_next] = (ush)dist;
1110
    s->l_buf[s->sym_next++] = (uch)lc;
1111
#else
1112 0
    s->sym_buf[s->sym_next++] = (uch)dist;
1113 0
    s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1114 0
    s->sym_buf[s->sym_next++] = (uch)lc;
1115
#endif
1116 0
    if (dist == 0) {
1117
        /* lc is the unmatched char */
1118 0
        s->dyn_ltree[lc].Freq++;
1119 0
    } else {
1120 0
        s->matches++;
1121
        /* Here, lc is the match length - MIN_MATCH */
1122 0
        dist--;             /* dist = match distance - 1 */
1123
        Assert((ush)dist < (ush)MAX_DIST(s) &&
1124
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1125
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1126
1127 0
        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1128 0
        s->dyn_dtree[d_code(dist)].Freq++;
1129
    }
1130 0
    return (s->sym_next == s->sym_end);
1131
}