[master] f3b856b Drop embedded jemalloc

Tollef Fog Heen tfheen at varnish-cache.org
Wed Jun 12 12:06:16 CEST 2013


commit f3b856b8f6644b5e0d5f2ca2af1ea8c6bc9ec365
Author: Tollef Fog Heen <tfheen at varnish-software.com>
Date:   Wed Jun 12 12:00:34 2013 +0200

    Drop embedded jemalloc
    
    The embedded jemalloc we ship is outdated and jemalloc is now
    generally available in distributions, so stop shipping our own copy.

diff --git a/configure.ac b/configure.ac
index f49f3fe..3c9add4 100644
--- a/configure.ac
+++ b/configure.ac
@@ -230,7 +230,6 @@ fi
 CFLAGS="${save_CFLAGS}" 
 
 # Use jemalloc on Linux
-JEMALLOC_SUBDIR=
 JEMALLOC_LDADD=
 AC_ARG_WITH([jemalloc],
             [AS_HELP_STRING([--with-jemalloc],
@@ -243,13 +242,10 @@ case $target in
         if test "x$with_jemalloc" != xno; then
             AC_CHECK_LIB([jemalloc], [malloc_conf],
                   [JEMALLOC_LDADD="-ljemalloc"],
-                  [AC_MSG_NOTICE([No system jemalloc found, using bundled version])
-                   JEMALLOC_SUBDIR=libjemalloc
-                   JEMALLOC_LDADD='$(top_builddir)/lib/libjemalloc/libjemalloc_mt.la'])
+                  [AC_MSG_WARN([No system jemalloc found, using system malloc])])
 	fi
 	;;
 esac
-AC_SUBST(JEMALLOC_SUBDIR)
 AC_SUBST(JEMALLOC_LDADD)
 
 # Userland slab allocator, available only on Solaris
@@ -598,7 +594,6 @@ AC_CONFIG_FILES([
     lib/libvmod_debug/Makefile
     lib/libvmod_std/Makefile
     lib/libvmod_directors/Makefile
-    lib/libjemalloc/Makefile
     man/Makefile
     redhat/Makefile
     varnishapi.pc
diff --git a/lib/Makefile.am b/lib/Makefile.am
index 094f42e..77c5ac5 100644
--- a/lib/Makefile.am
+++ b/lib/Makefile.am
@@ -8,8 +8,7 @@ SUBDIRS = \
 	libvgz \
 	libvmod_debug \
 	libvmod_std \
-	libvmod_directors \
-	@JEMALLOC_SUBDIR@
+	libvmod_directors
 
 DIST_SUBDIRS = 	\
 	libvarnishcompat \
@@ -19,5 +18,4 @@ DIST_SUBDIRS = 	\
 	libvgz \
 	libvmod_debug \
 	libvmod_std \
-	libvmod_directors \
-	libjemalloc
+	libvmod_directors
diff --git a/lib/libjemalloc/Makefile.am b/lib/libjemalloc/Makefile.am
deleted file mode 100644
index 63f5c7a..0000000
--- a/lib/libjemalloc/Makefile.am
+++ /dev/null
@@ -1,18 +0,0 @@
-# See source code comments to avoid memory leaks when enabling MALLOC_MAG.
-#CPPFLAGS = -DMALLOC_PRODUCTION -DMALLOC_MAG
-AM_CPPFLAGS = -DMALLOC_PRODUCTION
-
-#all: libjemalloc.so.0 libjemalloc_mt.so.0
-
-noinst_LTLIBRARIES = libjemalloc_mt.la
-
-libjemalloc_mt_la_LIBADD = ${PTHREAD_LIBS}
-libjemalloc_mt_la_LDFLAGS = -static
-libjemalloc_mt_la_CFLAGS = -D__isthreaded=true
-
-libjemalloc_mt_la_SOURCES = jemalloc_linux.c \
-	rb.h
-
-EXTRA_DIST = malloc.3 \
-	malloc.c \
-	README
diff --git a/lib/libjemalloc/README b/lib/libjemalloc/README
deleted file mode 100644
index 5b80997..0000000
--- a/lib/libjemalloc/README
+++ /dev/null
@@ -1,55 +0,0 @@
-This is a minimal-effort stand-alone jemalloc distribution for Linux.  The main
-rough spots are:
-
-* __isthreaded must be hard-coded, since the pthreads library really needs to
-  be involved in order to toggle it at run time.  Therefore, this distribution
-  builds two separate libraries:
-
-  + libjemalloc_mt.so.0 : Use for multi-threaded applications.
-  + libjemalloc.so.0 : Use for single-threaded applications.
-
-  Both libraries link against libpthread, though with a bit more code hacking,
-  this dependency could be removed for the single-threaded version.
-
-* MALLOC_MAG (thread-specific caching, using magazines) is disabled, because
-  special effort is required to avoid memory leaks when it is enabled.  To make
-  cleanup automatic, we would need help from the pthreads library.  If you
-  enable MALLOC_MAG, be sure to call _malloc_thread_cleanup() in each thread
-  just before it exits.
-
-* The code that determines the number of CPUs is sketchy.  The trouble is that
-  we must avoid any memory allocation during early initialization.
-
-In order to build:
-
-    make
-
-This generates two shared libraries, which you can either link against, or
-pre-load.
-
-Linking and running, where /path/to is the path to libjemalloc (-lpthread
-required even for libjemalloc.so):
-
-    gcc app.o -o app -L/path/to -ljemalloc_mt -lpthread
-    LD_LIBRARY_PATH=/path/to app
-
-Pre-loading:
-
-    LD_PRELOAD=/path/to/libjemalloc_mt.so.0 app
-
-jemalloc has a lot of run-time tuning options.  See the man page for details:
-
-    nroff -man malloc.3 | less
-
-In particular, take a look at the B, F, and N options.  If you enable
-MALLOC_MAG, look at the G and R options.
-
-If your application is crashing, or performance seems to be lacking, enable
-assertions and statistics gathering by removing MALLOC_PRODUCTION from CPPFLAGS
-in the Makefile.  In order to print a statistics summary at program exit, run
-your application like:
-
-    LD_PRELOAD=/path/to/libjemalloc_mt.so.0 MALLOC_OPTIONS=P app
-
-Please contact Jason Evans <jasone at canonware.com> with questions, comments, bug
-reports, etc.
diff --git a/lib/libjemalloc/jemalloc_linux.c b/lib/libjemalloc/jemalloc_linux.c
deleted file mode 100644
index 170777b..0000000
--- a/lib/libjemalloc/jemalloc_linux.c
+++ /dev/null
@@ -1,5696 +0,0 @@
-/*-
- * Copyright (C) 2006-2008 Jason Evans <jasone at FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice(s), this list of conditions and the following disclaimer as
- *    the first lines of this file unmodified other than the possible
- *    addition of one or more copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice(s), this list of conditions and the following disclaimer in
- *    the documentation and/or other materials provided with the
- *    distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- *******************************************************************************
- *
- * This allocator implementation is designed to provide scalable performance
- * for multi-threaded programs on multi-processor systems.  The following
- * features are included for this purpose:
- *
- *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
- *     contention and cache sloshing.
- *
- *   + Thread-specific caching is used if there are multiple threads, which
- *     reduces the amount of locking.
- *
- *   + Cache line sharing between arenas is avoided for internal data
- *     structures.
- *
- *   + Memory is managed in chunks and runs (chunks can be split into runs),
- *     rather than as individual pages.  This provides a constant-time
- *     mechanism for associating allocations with particular arenas.
- *
- * Allocation requests are rounded up to the nearest size class, and no record
- * of the original request size is maintained.  Allocations are broken into
- * categories according to size class.  Assuming runtime defaults, 4 kB pages
- * and a 16 byte quantum on a 32-bit system, the size classes in each category
- * are as follows:
- *
- *   |=======================================|
- *   | Category | Subcategory      |    Size |
- *   |=======================================|
- *   | Small    | Tiny             |       2 |
- *   |          |                  |       4 |
- *   |          |                  |       8 |
- *   |          |------------------+---------|
- *   |          | Quantum-spaced   |      16 |
- *   |          |                  |      32 |
- *   |          |                  |      48 |
- *   |          |                  |     ... |
- *   |          |                  |      96 |
- *   |          |                  |     112 |
- *   |          |                  |     128 |
- *   |          |------------------+---------|
- *   |          | Cacheline-spaced |     192 |
- *   |          |                  |     256 |
- *   |          |                  |     320 |
- *   |          |                  |     384 |
- *   |          |                  |     448 |
- *   |          |                  |     512 |
- *   |          |------------------+---------|
- *   |          | Sub-page         |     760 |
- *   |          |                  |    1024 |
- *   |          |                  |    1280 |
- *   |          |                  |     ... |
- *   |          |                  |    3328 |
- *   |          |                  |    3584 |
- *   |          |                  |    3840 |
- *   |=======================================|
- *   | Large                       |    4 kB |
- *   |                             |    8 kB |
- *   |                             |   12 kB |
- *   |                             |     ... |
- *   |                             | 1012 kB |
- *   |                             | 1016 kB |
- *   |                             | 1020 kB |
- *   |=======================================|
- *   | Huge                        |    1 MB |
- *   |                             |    2 MB |
- *   |                             |    3 MB |
- *   |                             |     ... |
- *   |=======================================|
- *
- * A different mechanism is used for each category:
- *
- *   Small : Each size class is segregated into its own set of runs.  Each run
- *           maintains a bitmap of which regions are free/allocated.
- *
- *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
- *           in the associated arena chunk header maps.
- *
- *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
- *          Metadata are stored in a separate red-black tree.
- *
- *******************************************************************************
- */
-
-/*
- * Set to false if single-threaded.  Even better, rip out all of the code that
- * doesn't get used if __isthreaded is false, so that libpthread isn't
- * necessary.
- */
-#ifndef __isthreaded
-#  define __isthreaded true
-#endif
-
-/*
- * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
- * defaults the A and J runtime options to off.  These settings are appropriate
- * for production systems.
- */
-/* #define	MALLOC_PRODUCTION */
-
-#ifndef MALLOC_PRODUCTION
-   /*
-    * MALLOC_DEBUG enables assertions and other sanity checks, and disables
-    * inline functions.
-    */
-#  define MALLOC_DEBUG
-
-   /* MALLOC_STATS enables statistics calculation. */
-#  define MALLOC_STATS
-#endif
-
-/*
- * MALLOC_TINY enables support for tiny objects, which are smaller than one
- * quantum.
- */
-#define	MALLOC_TINY
-
-/*
- * MALLOC_MAG enables a magazine-based thread-specific caching layer for small
- * objects.  This makes it possible to allocate/deallocate objects without any
- * locking when the cache is in the steady state.
- *
- * If MALLOC_MAG is enabled, make sure that _malloc_thread_cleanup() is called
- * by each thread just before it exits.
- */
-/* #define	MALLOC_MAG */
-
-/*
- * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
- * re-balances arena load if exponentially averaged contention exceeds a
- * certain threshold.
- */
-#define	MALLOC_BALANCE
-
-/*
- * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
- * segment (DSS).  In an ideal world, this functionality would be completely
- * unnecessary, but we are burdened by history and the lack of resource limits
- * for anonymous mapped memory.
- */
-/* #define	MALLOC_DSS */
-
-#define	_GNU_SOURCE /* For mremap(2). */
-#define	issetugid() 0
-#define	__DECONST(type, var)	((type)(uintptr_t)(const void *)(var))
-
-/* __FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 182225 2008-08-27 02:00:53Z jasone $"); */
-
-#include <sys/mman.h>
-#include <sys/param.h>
-#include <sys/time.h>
-#include <sys/types.h>
-#include <sys/sysctl.h>
-#include <sys/uio.h>
-
-#include <errno.h>
-#include <limits.h>
-#ifndef SIZE_T_MAX
-#  define SIZE_T_MAX	SIZE_MAX
-#endif
-#include <pthread.h>
-#include <sched.h>
-#include <stdarg.h>
-#include <stdbool.h>
-#include <stdio.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-#include <unistd.h>
-#include <fcntl.h>
-#include <pthread.h>
-
-#include "rb.h"
-
-/*
- * Prevent gcc from complaining about unused parameters.  Added directly
- * here instead of including ansidecl.h to save a build dependency on
- * binutils-dev.
- */
-#if __GNUC__ >= 3
-#ifndef ATTRIBUTE_UNUSED
-#define ATTRIBUTE_UNUSED __attribute__ ((__unused__))
-#endif /* ATTRIBUTE_UNUSED */
-#else
-#define ATTRIBUTE_UNUSED
-#endif
-
-#ifdef MALLOC_DEBUG
-   /* Disable inlining to make debugging easier. */
-#  define inline
-#endif
-
-/* Size of stack-allocated buffer passed to strerror_r(). */
-#define	STRERROR_BUF		64
-
-/*
- * The const_size2bin table is sized according to PAGESIZE_2POW, but for
- * correctness reasons, we never assume that
- * (pagesize == (1U << * PAGESIZE_2POW)).
- *
- * Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
- */
-#ifdef __i386__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	2
-#  define CPU_SPINWAIT		__asm__ volatile("pause")
-#endif
-#ifdef __ia64__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#endif
-#ifdef __alpha__
-#  define PAGESIZE_2POW		13
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#  define NO_TLS
-#endif
-#ifdef __sparc__
-#  define PAGESIZE_2POW		13
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#  define NO_TLS
-#endif
-#ifdef __amd64__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#  define CPU_SPINWAIT		__asm__ volatile("pause")
-#endif
-#ifdef __arm__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		3
-#  define SIZEOF_PTR_2POW	2
-#  define NO_TLS
-#endif
-#ifdef __mips__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		3
-#  define SIZEOF_PTR_2POW	2
-#  define NO_TLS
-#endif
-#ifdef __powerpc__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	2
-#endif
-#ifdef __s390__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	2
-#endif
-#ifdef __s390x__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#endif
-#ifdef __sh__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		3
-#  define SIZEOF_PTR_2POW	2
-#  define NO_TLS
-#endif
-
-#define	QUANTUM			((size_t)(1U << QUANTUM_2POW))
-#define	QUANTUM_MASK		(QUANTUM - 1)
-
-#define	SIZEOF_PTR		(1U << SIZEOF_PTR_2POW)
-
-/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
-#ifndef SIZEOF_INT_2POW
-#  define SIZEOF_INT_2POW	2
-#endif
-
-/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
-#if (!defined(PIC) && !defined(NO_TLS))
-#  define NO_TLS
-#endif
-
-#ifdef NO_TLS
-   /* MALLOC_MAG requires TLS. */
-#  ifdef MALLOC_MAG
-#    undef MALLOC_MAG
-#  endif
-   /* MALLOC_BALANCE requires TLS. */
-#  ifdef MALLOC_BALANCE
-#    undef MALLOC_BALANCE
-#  endif
-#endif
-
-/*
- * Size and alignment of memory chunks that are allocated by the OS's virtual
- * memory system.
- */
-#define	CHUNK_2POW_DEFAULT	20
-
-/* Maximum number of dirty pages per arena. */
-#define	DIRTY_MAX_DEFAULT	(1U << 9)
-
-/*
- * Maximum size of L1 cache line.  This is used to avoid cache line aliasing.
- * In addition, this controls the spacing of cacheline-spaced size classes.
- */
-#define	CACHELINE_2POW		6
-#define	CACHELINE		((size_t)(1U << CACHELINE_2POW))
-#define	CACHELINE_MASK		(CACHELINE - 1)
-
-/*
- * Subpages are an artificially designated partitioning of pages.  Their only
- * purpose is to support subpage-spaced size classes.
- *
- * There must be at least 4 subpages per page, due to the way size classes are
- * handled.
- */
-#define	SUBPAGE_2POW		8
-#define	SUBPAGE			((size_t)(1U << SUBPAGE_2POW))
-#define	SUBPAGE_MASK		(SUBPAGE - 1)
-
-#ifdef MALLOC_TINY
-   /* Smallest size class to support. */
-#  define TINY_MIN_2POW		1
-#endif
-
-/*
- * Maximum size class that is a multiple of the quantum, but not (necessarily)
- * a power of 2.  Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define	QSPACE_MAX_2POW_DEFAULT	7
-
-/*
- * Maximum size class that is a multiple of the cacheline, but not (necessarily)
- * a power of 2.  Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define	CSPACE_MAX_2POW_DEFAULT	9
-
-/*
- * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
- * as small as possible such that this setting is still honored, without
- * violating other constraints.  The goal is to make runs as small as possible
- * without exceeding a per run external fragmentation threshold.
- *
- * We use binary fixed point math for overhead computations, where the binary
- * point is implicitly RUN_BFP bits to the left.
- *
- * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
- * honored for some/all object sizes, since there is one bit of header overhead
- * per object (plus a constant).  This constraint is relaxed (ignored) for runs
- * that are so small that the per-region overhead is greater than:
- *
- *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
- */
-#define	RUN_BFP			12
-/*                                    \/   Implicit binary fixed point. */
-#define	RUN_MAX_OVRHD		0x0000003dU
-#define	RUN_MAX_OVRHD_RELAX	0x00001800U
-
-/* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
-#define	RUN_MAX_SMALL	(12 * pagesize)
-
-/*
- * Hyper-threaded CPUs may need a special instruction inside spin loops in
- * order to yield to another virtual CPU.  If no such instruction is defined
- * above, make CPU_SPINWAIT a no-op.
- */
-#ifndef CPU_SPINWAIT
-#  define CPU_SPINWAIT
-#endif
-
-/*
- * Adaptive spinning must eventually switch to blocking, in order to avoid the
- * potential for priority inversion deadlock.  Backing off past a certain point
- * can actually waste time.
- */
-#define	SPIN_LIMIT_2POW		11
-
-/*
- * Conversion from spinning to blocking is expensive; we use (1U <<
- * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
- * worst-case spinning.
- */
-#define	BLOCK_COST_2POW		4
-
-#ifdef MALLOC_MAG
-   /*
-    * Default magazine size, in bytes.  max_rounds is calculated to make
-    * optimal use of the space, leaving just enough room for the magazine
-    * header.
-    */
-#  define MAG_SIZE_2POW_DEFAULT	9
-#endif
-
-#ifdef MALLOC_BALANCE
-   /*
-    * We use an exponential moving average to track recent lock contention,
-    * where the size of the history window is N, and alpha=2/(N+1).
-    *
-    * Due to integer math rounding, very small values here can cause
-    * substantial degradation in accuracy, thus making the moving average decay
-    * faster than it would with precise calculation.
-    */
-#  define BALANCE_ALPHA_INV_2POW	9
-
-   /*
-    * Threshold value for the exponential moving contention average at which to
-    * re-assign a thread.
-    */
-#  define BALANCE_THRESHOLD_DEFAULT	(1U << (SPIN_LIMIT_2POW-4))
-#endif
-
-/******************************************************************************/
-
-typedef pthread_mutex_t malloc_mutex_t;
-typedef pthread_mutex_t malloc_spinlock_t;
-
-/* Set to true once the allocator has been initialized. */
-static bool malloc_initialized = false;
-
-/* Used to avoid initialization races. */
-static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
-
-/******************************************************************************/
-/*
- * Statistics data structures.
- */
-
-#ifdef MALLOC_STATS
-
-typedef struct malloc_bin_stats_s malloc_bin_stats_t;
-struct malloc_bin_stats_s {
-	/*
-	 * Number of allocation requests that corresponded to the size of this
-	 * bin.
-	 */
-	uint64_t	nrequests;
-
-#ifdef MALLOC_MAG
-	/* Number of magazine reloads from this bin. */
-	uint64_t	nmags;
-#endif
-
-	/* Total number of runs created for this bin's size class. */
-	uint64_t	nruns;
-
-	/*
-	 * Total number of runs reused by extracting them from the runs tree for
-	 * this bin's size class.
-	 */
-	uint64_t	reruns;
-
-	/* High-water mark for this bin. */
-	unsigned long	highruns;
-
-	/* Current number of runs in this bin. */
-	unsigned long	curruns;
-};
-
-typedef struct arena_stats_s arena_stats_t;
-struct arena_stats_s {
-	/* Number of bytes currently mapped. */
-	size_t		mapped;
-
-	/*
-	 * Total number of purge sweeps, total number of madvise calls made,
-	 * and total pages purged in order to keep dirty unused memory under
-	 * control.
-	 */
-	uint64_t	npurge;
-	uint64_t	nmadvise;
-	uint64_t	purged;
-
-	/* Per-size-category statistics. */
-	size_t		allocated_small;
-	uint64_t	nmalloc_small;
-	uint64_t	ndalloc_small;
-
-	size_t		allocated_large;
-	uint64_t	nmalloc_large;
-	uint64_t	ndalloc_large;
-
-#ifdef MALLOC_BALANCE
-	/* Number of times this arena reassigned a thread due to contention. */
-	uint64_t	nbalance;
-#endif
-};
-
-typedef struct chunk_stats_s chunk_stats_t;
-struct chunk_stats_s {
-	/* Number of chunks that were allocated. */
-	uint64_t	nchunks;
-
-	/* High-water mark for number of chunks allocated. */
-	unsigned long	highchunks;
-
-	/*
-	 * Current number of chunks allocated.  This value isn't maintained for
-	 * any other purpose, so keep track of it in order to be able to set
-	 * highchunks.
-	 */
-	unsigned long	curchunks;
-};
-
-#endif /* #ifdef MALLOC_STATS */
-
-/******************************************************************************/
-/*
- * Extent data structures.
- */
-
-/* Tree of extents. */
-typedef struct extent_node_s extent_node_t;
-struct extent_node_s {
-#ifdef MALLOC_DSS
-	/* Linkage for the size/address-ordered tree. */
-	rb_node(extent_node_t) link_szad;
-#endif
-
-	/* Linkage for the address-ordered tree. */
-	rb_node(extent_node_t) link_ad;
-
-	/* Pointer to the extent that this tree node is responsible for. */
-	void	*addr;
-
-	/* Total region size. */
-	size_t	size;
-};
-typedef rb_tree(extent_node_t) extent_tree_t;
-
-/******************************************************************************/
-/*
- * Arena data structures.
- */
-
-typedef struct arena_s arena_t;
-typedef struct arena_bin_s arena_bin_t;
-
-/* Each element of the chunk map corresponds to one page within the chunk. */
-typedef struct arena_chunk_map_s arena_chunk_map_t;
-struct arena_chunk_map_s {
-	/*
-	 * Linkage for run trees.  There are two disjoint uses:
-	 *
-	 * 1) arena_t's runs_avail tree.
-	 * 2) arena_run_t conceptually uses this linkage for in-use non-full
-	 *    runs, rather than directly embedding linkage.
-	 */
-	rb_node(arena_chunk_map_t)	link;
-
-	/*
-	 * Run address (or size) and various flags are stored together.  The bit
-	 * layout looks like (assuming 32-bit system):
-	 *
-	 *   ???????? ???????? ????---- ---kdzla
-	 *
-	 * ? : Unallocated: Run address for first/last pages, unset for internal
-	 *                  pages.
-	 *     Small: Run address.
-	 *     Large: Run size for first page, unset for trailing pages.
-	 * - : Unused.
-	 * k : key?
-	 * d : dirty?
-	 * z : zeroed?
-	 * l : large?
-	 * a : allocated?
-	 *
-	 * Following are example bit patterns for the three types of runs.
-	 *
-	 * r : run address
-	 * s : run size
-	 * x : don't care
-	 * - : 0
-	 * [dzla] : bit set
-	 *
-	 *   Unallocated:
-	 *     ssssssss ssssssss ssss---- --------
-	 *     xxxxxxxx xxxxxxxx xxxx---- ----d---
-	 *     ssssssss ssssssss ssss---- -----z--
-	 *
-	 *   Small:
-	 *     rrrrrrrr rrrrrrrr rrrr---- -------a
-	 *     rrrrrrrr rrrrrrrr rrrr---- -------a
-	 *     rrrrrrrr rrrrrrrr rrrr---- -------a
-	 *
-	 *   Large:
-	 *     ssssssss ssssssss ssss---- ------la
-	 *     -------- -------- -------- ------la
-	 *     -------- -------- -------- ------la
-	 */
-	size_t				bits;
-#define	CHUNK_MAP_KEY		((size_t)0x10U)
-#define	CHUNK_MAP_DIRTY		((size_t)0x08U)
-#define	CHUNK_MAP_ZEROED	((size_t)0x04U)
-#define	CHUNK_MAP_LARGE		((size_t)0x02U)
-#define	CHUNK_MAP_ALLOCATED	((size_t)0x01U)
-};
-typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
-typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
-
-/* Arena chunk header. */
-typedef struct arena_chunk_s arena_chunk_t;
-struct arena_chunk_s {
-	/* Arena that owns the chunk. */
-	arena_t		*arena;
-
-	/* Linkage for the arena's chunks_dirty tree. */
-	rb_node(arena_chunk_t) link_dirty;
-
-	/* Number of dirty pages. */
-	size_t		ndirty;
-
-	/* Map of pages within chunk that keeps track of free/large/small. */
-	arena_chunk_map_t map[1]; /* Dynamically sized. */
-};
-typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
-
-typedef struct arena_run_s arena_run_t;
-struct arena_run_s {
-#ifdef MALLOC_DEBUG
-	uint32_t	magic;
-#  define ARENA_RUN_MAGIC 0x384adf93
-#endif
-
-	/* Bin this run is associated with. */
-	arena_bin_t	*bin;
-
-	/* Index of first element that might have a free region. */
-	unsigned	regs_minelm;
-
-	/* Number of free regions in run. */
-	unsigned	nfree;
-
-	/* Bitmask of in-use regions (0: in use, 1: free). */
-	unsigned	regs_mask[1]; /* Dynamically sized. */
-};
-
-struct arena_bin_s {
-	/*
-	 * Current run being used to service allocations of this bin's size
-	 * class.
-	 */
-	arena_run_t	*runcur;
-
-	/*
-	 * Tree of non-full runs.  This tree is used when looking for an
-	 * existing run when runcur is no longer usable.  We choose the
-	 * non-full run that is lowest in memory; this policy tends to keep
-	 * objects packed well, and it can also help reduce the number of
-	 * almost-empty chunks.
-	 */
-	arena_run_tree_t runs;
-
-	/* Size of regions in a run for this bin's size class. */
-	size_t		reg_size;
-
-	/* Total size of a run for this bin's size class. */
-	size_t		run_size;
-
-	/* Total number of regions in a run for this bin's size class. */
-	uint32_t	nregs;
-
-	/* Number of elements in a run's regs_mask for this bin's size class. */
-	uint32_t	regs_mask_nelms;
-
-	/* Offset of first region in a run for this bin's size class. */
-	uint32_t	reg0_offset;
-
-#ifdef MALLOC_STATS
-	/* Bin statistics. */
-	malloc_bin_stats_t stats;
-#endif
-};
-
-struct arena_s {
-#ifdef MALLOC_DEBUG
-	uint32_t		magic;
-#  define ARENA_MAGIC 0x947d3d24
-#endif
-
-	/* All operations on this arena require that lock be locked. */
-	pthread_mutex_t		lock;
-
-#ifdef MALLOC_STATS
-	arena_stats_t		stats;
-#endif
-
-	/* Tree of dirty-page-containing chunks this arena manages. */
-	arena_chunk_tree_t	chunks_dirty;
-
-	/*
-	 * In order to avoid rapid chunk allocation/deallocation when an arena
-	 * oscillates right on the cusp of needing a new chunk, cache the most
-	 * recently freed chunk.  The spare is left in the arena's chunk trees
-	 * until it is deleted.
-	 *
-	 * There is one spare chunk per arena, rather than one spare total, in
-	 * order to avoid interactions between multiple threads that could make
-	 * a single spare inadequate.
-	 */
-	arena_chunk_t		*spare;
-
-	/*
-	 * Current count of pages within unused runs that are potentially
-	 * dirty, and for which madvise(... MADV_DONTNEED) has not been called.
-	 * By tracking this, we can institute a limit on how much dirty unused
-	 * memory is mapped for each arena.
-	 */
-	size_t			ndirty;
-
-	/*
-	 * Size/address-ordered tree of this arena's available runs.  This tree
-	 * is used for first-best-fit run allocation.
-	 */
-	arena_avail_tree_t	runs_avail;
-
-#ifdef MALLOC_BALANCE
-	/*
-	 * The arena load balancing machinery needs to keep track of how much
-	 * lock contention there is.  This value is exponentially averaged.
-	 */
-	uint32_t		contention;
-#endif
-
-	/*
-	 * bins is used to store rings of free regions of the following sizes,
-	 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
-	 *
-	 *   bins[i] | size |
-	 *   --------+------+
-	 *        0  |    2 |
-	 *        1  |    4 |
-	 *        2  |    8 |
-	 *   --------+------+
-	 *        3  |   16 |
-	 *        4  |   32 |
-	 *        5  |   48 |
-	 *        6  |   64 |
-	 *           :      :
-	 *           :      :
-	 *       33  |  496 |
-	 *       34  |  512 |
-	 *   --------+------+
-	 *       35  | 1024 |
-	 *       36  | 2048 |
-	 *   --------+------+
-	 */
-	arena_bin_t		bins[1]; /* Dynamically sized. */
-};
-
-/******************************************************************************/
-/*
- * Magazine data structures.
- */
-
-#ifdef MALLOC_MAG
-typedef struct mag_s mag_t;
-struct mag_s {
-	size_t		binind; /* Index of associated bin. */
-	size_t		nrounds;
-	void		*rounds[1]; /* Dynamically sized. */
-};
-
-/*
- * Magazines are lazily allocated, but once created, they remain until the
- * associated mag_rack is destroyed.
- */
-typedef struct bin_mags_s bin_mags_t;
-struct bin_mags_s {
-	mag_t	*curmag;
-	mag_t	*sparemag;
-};
-
-typedef struct mag_rack_s mag_rack_t;
-struct mag_rack_s {
-	bin_mags_t	bin_mags[1]; /* Dynamically sized. */
-};
-#endif
-
-/******************************************************************************/
-/*
- * Data.
- */
-
-/* Number of CPUs. */
-static unsigned		ncpus;
-
-/* VM page size. */
-static size_t		pagesize;
-static size_t		pagesize_mask;
-static size_t		pagesize_2pow;
-
-/* Various bin-related settings. */
-#ifdef MALLOC_TINY		/* Number of (2^n)-spaced tiny bins. */
-#  define		ntbins	((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
-#else
-#  define		ntbins	0
-#endif
-static unsigned		nqbins; /* Number of quantum-spaced bins. */
-static unsigned		ncbins; /* Number of cacheline-spaced bins. */
-static unsigned		nsbins; /* Number of subpage-spaced bins. */
-static unsigned		nbins;
-#ifdef MALLOC_TINY
-#  define		tspace_max	((size_t)(QUANTUM >> 1))
-#endif
-#define			qspace_min	QUANTUM
-static size_t		qspace_max;
-static size_t		cspace_min;
-static size_t		cspace_max;
-static size_t		sspace_min;
-static size_t		sspace_max;
-#define			bin_maxclass	sspace_max
-
-static uint8_t const	*size2bin;
-/*
- * const_size2bin is a static constant lookup table that in the common case can
- * be used as-is for size2bin.  For dynamically linked programs, this avoids
- * a page of memory overhead per process.
- */
-#define	S2B_1(i)	i,
-#define	S2B_2(i)	S2B_1(i) S2B_1(i)
-#define	S2B_4(i)	S2B_2(i) S2B_2(i)
-#define	S2B_8(i)	S2B_4(i) S2B_4(i)
-#define	S2B_16(i)	S2B_8(i) S2B_8(i)
-#define	S2B_32(i)	S2B_16(i) S2B_16(i)
-#define	S2B_64(i)	S2B_32(i) S2B_32(i)
-#define	S2B_128(i)	S2B_64(i) S2B_64(i)
-#define	S2B_256(i)	S2B_128(i) S2B_128(i)
-static const uint8_t	const_size2bin[(1U << PAGESIZE_2POW) - 255] = {
-	S2B_1(0xffU)		/*    0 */
-#if (QUANTUM_2POW == 4)
-/* 64-bit system ************************/
-#  ifdef MALLOC_TINY
-	S2B_2(0)		/*    2 */
-	S2B_2(1)		/*    4 */
-	S2B_4(2)		/*    8 */
-	S2B_8(3)		/*   16 */
-#    define S2B_QMIN 3
-#  else
-	S2B_16(0)		/*   16 */
-#    define S2B_QMIN 0
-#  endif
-	S2B_16(S2B_QMIN + 1)	/*   32 */
-	S2B_16(S2B_QMIN + 2)	/*   48 */
-	S2B_16(S2B_QMIN + 3)	/*   64 */
-	S2B_16(S2B_QMIN + 4)	/*   80 */
-	S2B_16(S2B_QMIN + 5)	/*   96 */
-	S2B_16(S2B_QMIN + 6)	/*  112 */
-	S2B_16(S2B_QMIN + 7)	/*  128 */
-#  define S2B_CMIN (S2B_QMIN + 8)
-#else
-/* 32-bit system ************************/
-#  ifdef MALLOC_TINY
-	S2B_2(0)		/*    2 */
-	S2B_2(1)		/*    4 */
-	S2B_4(2)		/*    8 */
-#    define S2B_QMIN 2
-#  else
-	S2B_8(0)		/*    8 */
-#    define S2B_QMIN 0
-#  endif
-	S2B_8(S2B_QMIN + 1)	/*   16 */
-	S2B_8(S2B_QMIN + 2)	/*   24 */
-	S2B_8(S2B_QMIN + 3)	/*   32 */
-	S2B_8(S2B_QMIN + 4)	/*   40 */
-	S2B_8(S2B_QMIN + 5)	/*   48 */
-	S2B_8(S2B_QMIN + 6)	/*   56 */
-	S2B_8(S2B_QMIN + 7)	/*   64 */
-	S2B_8(S2B_QMIN + 8)	/*   72 */
-	S2B_8(S2B_QMIN + 9)	/*   80 */
-	S2B_8(S2B_QMIN + 10)	/*   88 */
-	S2B_8(S2B_QMIN + 11)	/*   96 */
-	S2B_8(S2B_QMIN + 12)	/*  104 */
-	S2B_8(S2B_QMIN + 13)	/*  112 */
-	S2B_8(S2B_QMIN + 14)	/*  120 */
-	S2B_8(S2B_QMIN + 15)	/*  128 */
-#  define S2B_CMIN (S2B_QMIN + 16)
-#endif
-/****************************************/
-	S2B_64(S2B_CMIN + 0)	/*  192 */
-	S2B_64(S2B_CMIN + 1)	/*  256 */
-	S2B_64(S2B_CMIN + 2)	/*  320 */
-	S2B_64(S2B_CMIN + 3)	/*  384 */
-	S2B_64(S2B_CMIN + 4)	/*  448 */
-	S2B_64(S2B_CMIN + 5)	/*  512 */
-#  define S2B_SMIN (S2B_CMIN + 6)
-	S2B_256(S2B_SMIN + 0)	/*  768 */
-	S2B_256(S2B_SMIN + 1)	/* 1024 */
-	S2B_256(S2B_SMIN + 2)	/* 1280 */
-	S2B_256(S2B_SMIN + 3)	/* 1536 */
-	S2B_256(S2B_SMIN + 4)	/* 1792 */
-	S2B_256(S2B_SMIN + 5)	/* 2048 */
-	S2B_256(S2B_SMIN + 6)	/* 2304 */
-	S2B_256(S2B_SMIN + 7)	/* 2560 */
-	S2B_256(S2B_SMIN + 8)	/* 2816 */
-	S2B_256(S2B_SMIN + 9)	/* 3072 */
-	S2B_256(S2B_SMIN + 10)	/* 3328 */
-	S2B_256(S2B_SMIN + 11)	/* 3584 */
-	S2B_256(S2B_SMIN + 12)	/* 3840 */
-#if (PAGESIZE_2POW == 13)
-	S2B_256(S2B_SMIN + 13)	/* 4096 */
-	S2B_256(S2B_SMIN + 14)	/* 4352 */
-	S2B_256(S2B_SMIN + 15)	/* 4608 */
-	S2B_256(S2B_SMIN + 16)	/* 4864 */
-	S2B_256(S2B_SMIN + 17)	/* 5120 */
-	S2B_256(S2B_SMIN + 18)	/* 5376 */
-	S2B_256(S2B_SMIN + 19)	/* 5632 */
-	S2B_256(S2B_SMIN + 20)	/* 5888 */
-	S2B_256(S2B_SMIN + 21)	/* 6144 */
-	S2B_256(S2B_SMIN + 22)	/* 6400 */
-	S2B_256(S2B_SMIN + 23)	/* 6656 */
-	S2B_256(S2B_SMIN + 24)	/* 6912 */
-	S2B_256(S2B_SMIN + 25)	/* 7168 */
-	S2B_256(S2B_SMIN + 26)	/* 7424 */
-	S2B_256(S2B_SMIN + 27)	/* 7680 */
-	S2B_256(S2B_SMIN + 28)	/* 7936 */
-#endif
-};
-#undef S2B_1
-#undef S2B_2
-#undef S2B_4
-#undef S2B_8
-#undef S2B_16
-#undef S2B_32
-#undef S2B_64
-#undef S2B_128
-#undef S2B_256
-#undef S2B_QMIN
-#undef S2B_CMIN
-#undef S2B_SMIN
-
-#ifdef MALLOC_MAG
-static size_t		max_rounds;
-#endif
-
-/* Various chunk-related settings. */
-static size_t		chunksize;
-static size_t		chunksize_mask; /* (chunksize - 1). */
-static size_t		chunk_npages;
-static size_t		arena_chunk_header_npages;
-static size_t		arena_maxclass; /* Max size class for arenas. */
-
-/********/
-/*
- * Chunks.
- */
-
-/* Protects chunk-related data structures. */
-static malloc_mutex_t	huge_mtx;
-
-/* Tree of chunks that are stand-alone huge allocations. */
-static extent_tree_t	huge;
-
-#ifdef MALLOC_DSS
-/*
- * Protects sbrk() calls.  This avoids malloc races among threads, though it
- * does not protect against races with threads that call sbrk() directly.
- */
-static malloc_mutex_t	dss_mtx;
-/* Base address of the DSS. */
-static void		*dss_base;
-/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
-static void		*dss_prev;
-/* Current upper limit on DSS addresses. */
-static void		*dss_max;
-
-/*
- * Trees of chunks that were previously allocated (trees differ only in node
- * ordering).  These are used when allocating chunks, in an attempt to re-use
- * address space.  Depending on function, different tree orderings are needed,
- * which is why there are two trees with the same contents.
- */
-static extent_tree_t	dss_chunks_szad;
-static extent_tree_t	dss_chunks_ad;
-#endif
-
-#ifdef MALLOC_STATS
-/* Huge allocation statistics. */
-static uint64_t		huge_nmalloc;
-static uint64_t		huge_ndalloc;
-static size_t		huge_allocated;
-#endif
-
-/****************************/
-/*
- * base (internal allocation).
- */
-
-/*
- * Current pages that are being used for internal memory allocations.  These
- * pages are carved up in cacheline-size quanta, so that there is no chance of
- * false cache line sharing.
- */
-static void		*base_pages;
-static void		*base_next_addr;
-static void		*base_past_addr; /* Addr immediately past base_pages. */
-static extent_node_t	*base_nodes;
-static malloc_mutex_t	base_mtx;
-#ifdef MALLOC_STATS
-static size_t		base_mapped;
-#endif
-
-/********/
-/*
- * Arenas.
- */
-
-/*
- * Arenas that are used to service external requests.  Not all elements of the
- * arenas array are necessarily used; arenas are created lazily as needed.
- */
-static arena_t		**arenas;
-static unsigned		narenas;
-#ifndef NO_TLS
-#  ifdef MALLOC_BALANCE
-static unsigned		narenas_2pow;
-#  else
-static unsigned		next_arena;
-#  endif
-#endif
-static pthread_mutex_t	arenas_lock; /* Protects arenas initialization. */
-
-#ifndef NO_TLS
-/*
- * Map of pthread_self() --> arenas[???], used for selecting an arena to use
- * for allocations.
- */
-static __thread arena_t	*arenas_map;
-#endif
-
-#ifdef MALLOC_MAG
-/*
- * Map of thread-specific magazine racks, used for thread-specific object
- * caching.
- */
-static __thread mag_rack_t	*mag_rack;
-#endif
-
-#ifdef MALLOC_STATS
-/* Chunk statistics. */
-static chunk_stats_t	stats_chunks;
-#endif
-
-/*******************************/
-/*
- * Runtime configuration options.
- */
-const char	*_malloc_options;
-
-#ifndef MALLOC_PRODUCTION
-static bool	opt_abort = true;
-static bool	opt_junk = true;
-#else
-static bool	opt_abort = false;
-static bool	opt_junk = false;
-#endif
-#ifdef MALLOC_DSS
-static bool	opt_dss = true;
-static bool	opt_mmap = true;
-#endif
-#ifdef MALLOC_MAG
-static bool	opt_mag = true;
-static size_t	opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
-#endif
-static size_t	opt_dirty_max = DIRTY_MAX_DEFAULT;
-#ifdef MALLOC_BALANCE
-static uint64_t	opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
-#endif
-static bool	opt_print_stats = false;
-static size_t	opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
-static size_t	opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
-static size_t	opt_chunk_2pow = CHUNK_2POW_DEFAULT;
-static bool	opt_utrace = false;
-static bool	opt_sysv = false;
-static bool	opt_xmalloc = false;
-static bool	opt_zero = false;
-static int	opt_narenas_lshift = 0;
-
-typedef struct {
-	void	*p;
-	size_t	s;
-	void	*r;
-} malloc_utrace_t;
-
-#ifdef MALLOC_STATS
-#define	UTRACE(a, b, c)							\
-	if (opt_utrace) {						\
-		malloc_utrace_t ut;					\
-		ut.p = (a);						\
-		ut.s = (b);						\
-		ut.r = (c);						\
-		utrace(&ut, sizeof(ut));				\
-	}
-#else
-#define	UTRACE(a, b, c)
-#endif
-
-/******************************************************************************/
-/*
- * Begin function prototypes for non-inline static functions.
- */
-
-static bool	malloc_mutex_init(malloc_mutex_t *mutex);
-static bool	malloc_spin_init(pthread_mutex_t *lock);
-static void	wrtmessage(const char *p1, const char *p2, const char *p3,
-		const char *p4);
-#ifdef MALLOC_STATS
-static void	malloc_printf(const char *format, ...);
-#endif
-static char	*umax2s(uintmax_t x, char *s);
-#ifdef MALLOC_DSS
-static bool	base_pages_alloc_dss(size_t minsize);
-#endif
-static bool	base_pages_alloc_mmap(size_t minsize);
-static bool	base_pages_alloc(size_t minsize);
-static void	*base_alloc(size_t size);
-static extent_node_t *base_node_alloc(void);
-static void	base_node_dealloc(extent_node_t *node);
-#ifdef MALLOC_STATS
-static void	stats_print(arena_t *arena);
-#endif
-static void	*pages_map(void *addr, size_t size);
-static void	pages_unmap(void *addr, size_t size);
-#ifdef MALLOC_DSS
-static void	*chunk_alloc_dss(size_t size);
-static void	*chunk_recycle_dss(size_t size, bool zero);
-#endif
-static void	*chunk_alloc_mmap(size_t size);
-static void	*chunk_alloc(size_t size, bool zero);
-#ifdef MALLOC_DSS
-static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
-static bool	chunk_dealloc_dss(void *chunk, size_t size);
-#endif
-static void	chunk_dealloc_mmap(void *chunk, size_t size);
-static void	chunk_dealloc(void *chunk, size_t size);
-#ifndef NO_TLS
-static arena_t	*choose_arena_hard(void);
-#endif
-static void	arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
-    bool large, bool zero);
-static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
-static void	arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
-static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
-    bool zero);
-static void	arena_purge(arena_t *arena);
-static void	arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
-static void	arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
-    arena_run_t *run, size_t oldsize, size_t newsize);
-static void	arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
-    arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
-static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
-static void	*arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
-static size_t	arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
-#ifdef MALLOC_BALANCE
-static void	arena_lock_balance_hard(arena_t *arena);
-#endif
-#ifdef MALLOC_MAG
-static void	mag_load(mag_t *mag);
-#endif
-static void	*arena_malloc_large(arena_t *arena, size_t size, bool zero);
-static void	*arena_palloc(arena_t *arena, size_t alignment, size_t size,
-    size_t alloc_size);
-static size_t	arena_salloc(const void *ptr);
-#ifdef MALLOC_MAG
-static void	mag_unload(mag_t *mag);
-#endif
-static void	arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
-    void *ptr);
-static void	arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
-    void *ptr, size_t size, size_t oldsize);
-static bool	arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
-    void *ptr, size_t size, size_t oldsize);
-static bool	arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
-static void	*arena_ralloc(void *ptr, size_t size, size_t oldsize);
-static bool	arena_new(arena_t *arena);
-static arena_t	*arenas_extend(unsigned ind);
-#ifdef MALLOC_MAG
-static mag_t	*mag_create(arena_t *arena, size_t binind);
-static void	mag_destroy(mag_t *mag);
-static mag_rack_t *mag_rack_create(arena_t *arena);
-static void	mag_rack_destroy(mag_rack_t *rack);
-#endif
-static void	*huge_malloc(size_t size, bool zero);
-static void	*huge_palloc(size_t alignment, size_t size);
-static void	*huge_ralloc(void *ptr, size_t size, size_t oldsize);
-static void	huge_dalloc(void *ptr);
-static void	malloc_print_stats(void);
-#ifdef MALLOC_DEBUG
-static void	size2bin_validate(void);
-#endif
-static bool	size2bin_init(void);
-static bool	size2bin_init_hard(void);
-static unsigned	malloc_ncpus(void);
-static bool	malloc_init_hard(void);
-void		_malloc_prefork(void);
-void		_malloc_postfork(void);
-
-/*
- * End function prototypes.
- */
-/******************************************************************************/
-
-/*
- * Functions missing prototypes which caused -Werror to fail.
- * Not sure if it has any side effects.
- * */
-size_t malloc_usable_size(const void *ptr);
-void _malloc_thread_cleanup(void);
-
-
-static void
-wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
-{
-
-	write(STDERR_FILENO, p1, strlen(p1));
-	write(STDERR_FILENO, p2, strlen(p2));
-	write(STDERR_FILENO, p3, strlen(p3));
-	write(STDERR_FILENO, p4, strlen(p4));
-}
-
-#define	_malloc_message malloc_message
-void	(*_malloc_message)(const char *p1, const char *p2, const char *p3,
-	    const char *p4) = wrtmessage;
-
-/*
- * We don't want to depend on vsnprintf() for production builds, since that can
- * cause unnecessary bloat for static binaries.  umax2s() provides minimal
- * integer printing functionality, so that malloc_printf() use can be limited to
- * MALLOC_STATS code.
- */
-#define	UMAX2S_BUFSIZE	21
-static char *
-umax2s(uintmax_t x, char *s)
-{
-	unsigned i;
-
-	i = UMAX2S_BUFSIZE - 1;
-	s[i] = '\0';
-	do {
-		i--;
-		s[i] = "0123456789"[x % 10];
-		x /= 10;
-	} while (x > 0);
-
-	return (&s[i]);
-}
-
-/*
- * Define a custom assert() in order to reduce the chances of deadlock during
- * assertion failure.
- */
-#ifdef MALLOC_DEBUG
-#  define assert(e) do {						\
-	if (!(e)) {							\
-		char line_buf[UMAX2S_BUFSIZE];				\
-		_malloc_message(__FILE__, ":", umax2s(__LINE__,		\
-		    line_buf), ": Failed assertion: ");			\
-		_malloc_message("\"", #e, "\"\n", "");			\
-		abort();						\
-	}								\
-} while (0)
-#else
-#define assert(e)
-#endif
-
-#ifdef MALLOC_STATS
-static int
-utrace(const void *addr, size_t len)
-{
-	malloc_utrace_t *ut = (malloc_utrace_t *)addr;
-
-	assert(len == sizeof(malloc_utrace_t));
-
-	if (ut->p == NULL && ut->s == 0 && ut->r == NULL)
-		malloc_printf("%d x USER malloc_init()\n", getpid());
-	else if (ut->p == NULL && ut->r != NULL) {
-		malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r,
-		    ut->s);
-	} else if (ut->p != NULL && ut->r != NULL) {
-		malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(),
-		    ut->r, ut->p, ut->s);
-	} else
-		malloc_printf("%d x USER free(%p)\n", getpid(), ut->p);
-
-	return (0);
-}
-#endif
-
-static inline const char *
-_getprogname(void)
-{
-
-	return ("<jemalloc>");
-}
-
-#ifdef MALLOC_STATS
-/*
- * Print to stderr in such a way as to (hopefully) avoid memory allocation.
- */
-static void
-malloc_printf(const char *format, ...)
-{
-	char buf[4096];
-	va_list ap;
-
-	va_start(ap, format);
-	vsnprintf(buf, sizeof(buf), format, ap);
-	va_end(ap);
-	_malloc_message(buf, "", "", "");
-}
-#endif
-
-/******************************************************************************/
-/*
- * Begin mutex.
- */
-
-static bool
-malloc_mutex_init(malloc_mutex_t *mutex)
-{
-	pthread_mutexattr_t attr;
-
-	if (pthread_mutexattr_init(&attr) != 0)
-		return (true);
-	pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
-	if (pthread_mutex_init(mutex, &attr) != 0) {
-		pthread_mutexattr_destroy(&attr);
-		return (true);
-	}
-	pthread_mutexattr_destroy(&attr);
-
-	return (false);
-}
-
-static inline void
-malloc_mutex_lock(malloc_mutex_t *mutex)
-{
-
-	if (__isthreaded)
-		pthread_mutex_lock(mutex);
-}
-
-static inline void
-malloc_mutex_unlock(malloc_mutex_t *mutex)
-{
-
-	if (__isthreaded)
-		pthread_mutex_unlock(mutex);
-}
-
-/*
- * End mutex.
- */
-/******************************************************************************/
-/*
- * Begin spin lock.  Spin locks here are actually adaptive mutexes that block
- * after a period of spinning, because unbounded spinning would allow for
- * priority inversion.
- */
-
-static bool
-malloc_spin_init(pthread_mutex_t *lock)
-{
-
-	if (pthread_mutex_init(lock, NULL) != 0)
-		return (true);
-
-	return (false);
-}
-
-static inline unsigned
-malloc_spin_lock(pthread_mutex_t *lock)
-{
-	unsigned ret = 0;
-
-	if (__isthreaded) {
-		if (pthread_mutex_trylock(lock) != 0) {
-			unsigned i;
-			volatile unsigned j;
-
-			/* Exponentially back off. */
-			for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
-				for (j = 0; j < (1U << i); j++) {
-					ret++;
-					CPU_SPINWAIT;
-				}
-
-				if (pthread_mutex_trylock(lock) == 0)
-					return (ret);
-			}
-
-			/*
-			 * Spinning failed.  Block until the lock becomes
-			 * available, in order to avoid indefinite priority
-			 * inversion.
-			 */
-			pthread_mutex_lock(lock);
-			assert((ret << BLOCK_COST_2POW) != 0);
-			return (ret << BLOCK_COST_2POW);
-		}
-	}
-
-	return (ret);
-}
-
-static inline void
-malloc_spin_unlock(pthread_mutex_t *lock)
-{
-
-	if (__isthreaded)
-		pthread_mutex_unlock(lock);
-}
-
-/*
- * End spin lock.
- */
-/******************************************************************************/
-/*
- * Begin Utility functions/macros.
- */
-
-/* Return the chunk address for allocation address a. */
-#define	CHUNK_ADDR2BASE(a)						\
-	((void *)((uintptr_t)(a) & ~chunksize_mask))
-
-/* Return the chunk offset of address a. */
-#define	CHUNK_ADDR2OFFSET(a)						\
-	((size_t)((uintptr_t)(a) & chunksize_mask))
-
-/* Return the smallest chunk multiple that is >= s. */
-#define	CHUNK_CEILING(s)						\
-	(((s) + chunksize_mask) & ~chunksize_mask)
-
-/* Return the smallest quantum multiple that is >= a. */
-#define	QUANTUM_CEILING(a)						\
-	(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
-
-/* Return the smallest cacheline multiple that is >= s. */
-#define	CACHELINE_CEILING(s)						\
-	(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
-
-/* Return the smallest subpage multiple that is >= s. */
-#define	SUBPAGE_CEILING(s)						\
-	(((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
-
-/* Return the smallest pagesize multiple that is >= s. */
-#define	PAGE_CEILING(s)							\
-	(((s) + pagesize_mask) & ~pagesize_mask)
-
-#ifdef MALLOC_TINY
-/* Compute the smallest power of 2 that is >= x. */
-static inline size_t
-pow2_ceil(size_t x)
-{
-
-	x--;
-	x |= x >> 1;
-	x |= x >> 2;
-	x |= x >> 4;
-	x |= x >> 8;
-	x |= x >> 16;
-#if (SIZEOF_PTR == 8)
-	x |= x >> 32;
-#endif
-	x++;
-	return (x);
-}
-#endif
-
-#ifdef MALLOC_BALANCE
-/*
- * Use a simple linear congruential pseudo-random number generator:
- *
- *   prn(y) = (a*x + c) % m
- *
- * where the following constants ensure maximal period:
- *
- *   a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
- *   c == Odd number (relatively prime to 2^n).
- *   m == 2^32
- *
- * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
- *
- * This choice of m has the disadvantage that the quality of the bits is
- * proportional to bit position.  For example. the lowest bit has a cycle of 2,
- * the next has a cycle of 4, etc.  For this reason, we prefer to use the upper
- * bits.
- */
-#  define PRN_DEFINE(suffix, var, a, c)					\
-static inline void							\
-sprn_##suffix(uint32_t seed)						\
-{									\
-	var = seed;							\
-}									\
-									\
-static inline uint32_t							\
-prn_##suffix(uint32_t lg_range)						\
-{									\
-	uint32_t ret, x;						\
-									\
-	assert(lg_range > 0);						\
-	assert(lg_range <= 32);						\
-									\
-	x = (var * (a)) + (c);						\
-	var = x;							\
-	ret = x >> (32 - lg_range);					\
-									\
-	return (ret);							\
-}
-#  define SPRN(suffix, seed)	sprn_##suffix(seed)
-#  define PRN(suffix, lg_range)	prn_##suffix(lg_range)
-#endif
-
-#ifdef MALLOC_BALANCE
-/* Define the PRNG used for arena assignment. */
-static __thread uint32_t balance_x;
-PRN_DEFINE(balance, balance_x, 1297, 1301)
-#endif
-
-/******************************************************************************/
-
-#ifdef MALLOC_DSS
-static bool
-base_pages_alloc_dss(size_t minsize)
-{
-
-	/*
-	 * Do special DSS allocation here, since base allocations don't need to
-	 * be chunk-aligned.
-	 */
-	malloc_mutex_lock(&dss_mtx);
-	if (dss_prev != (void *)-1) {
-		intptr_t incr;
-		size_t csize = CHUNK_CEILING(minsize);
-
-		do {
-			/* Get the current end of the DSS. */
-			dss_max = sbrk(0);
-
-			/*
-			 * Calculate how much padding is necessary to
-			 * chunk-align the end of the DSS.  Don't worry about
-			 * dss_max not being chunk-aligned though.
-			 */
-			incr = (intptr_t)chunksize
-			    - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
-			assert(incr >= 0);
-			if ((size_t)incr < minsize)
-				incr += csize;
-
-			dss_prev = sbrk(incr);
-			if (dss_prev == dss_max) {
-				/* Success. */
-				dss_max = (void *)((intptr_t)dss_prev + incr);
-				base_pages = dss_prev;
-				base_next_addr = base_pages;
-				base_past_addr = dss_max;
-#ifdef MALLOC_STATS
-				base_mapped += incr;
-#endif
-				malloc_mutex_unlock(&dss_mtx);
-				return (false);
-			}
-		} while (dss_prev != (void *)-1);
-	}
-	malloc_mutex_unlock(&dss_mtx);
-
-	return (true);
-}
-#endif
-
-static bool
-base_pages_alloc_mmap(size_t minsize)
-{
-	size_t csize;
-
-	assert(minsize != 0);
-	csize = PAGE_CEILING(minsize);
-	base_pages = pages_map(NULL, csize);
-	if (base_pages == NULL)
-		return (true);
-	base_next_addr = base_pages;
-	base_past_addr = (void *)((uintptr_t)base_pages + csize);
-#ifdef MALLOC_STATS
-	base_mapped += csize;
-#endif
-
-	return (false);
-}
-
-static bool
-base_pages_alloc(size_t minsize)
-{
-
-#ifdef MALLOC_DSS
-	if (opt_dss) {
-		if (base_pages_alloc_dss(minsize) == false)
-			return (false);
-	}
-
-	if (opt_mmap && minsize != 0)
-#endif
-	{
-		if (base_pages_alloc_mmap(minsize) == false)
-			return (false);
-	}
-
-	return (true);
-}
-
-static void *
-base_alloc(size_t size)
-{
-	void *ret;
-	size_t csize;
-
-	/* Round size up to nearest multiple of the cacheline size. */
-	csize = CACHELINE_CEILING(size);
-
-	malloc_mutex_lock(&base_mtx);
-	/* Make sure there's enough space for the allocation. */
-	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
-		if (base_pages_alloc(csize)) {
-			malloc_mutex_unlock(&base_mtx);
-			return (NULL);
-		}
-	}
-	/* Allocate. */
-	ret = base_next_addr;
-	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
-	malloc_mutex_unlock(&base_mtx);
-
-	return (ret);
-}
-
-static extent_node_t *
-base_node_alloc(void)
-{
-	extent_node_t *ret;
-
-	malloc_mutex_lock(&base_mtx);
-	if (base_nodes != NULL) {
-		ret = base_nodes;
-		base_nodes = *(extent_node_t **)ret;
-		malloc_mutex_unlock(&base_mtx);
-	} else {
-		malloc_mutex_unlock(&base_mtx);
-		ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
-	}
-
-	return (ret);
-}
-
-static void
-base_node_dealloc(extent_node_t *node)
-{
-
-	malloc_mutex_lock(&base_mtx);
-	*(extent_node_t **)node = base_nodes;
-	base_nodes = node;
-	malloc_mutex_unlock(&base_mtx);
-}
-
-/******************************************************************************/
-
-#ifdef MALLOC_STATS
-static void
-stats_print(arena_t *arena)
-{
-	unsigned i, gap_start;
-
-	malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
-	    " %llu madvise%s, %llu page%s purged\n",
-	    arena->ndirty, arena->ndirty == 1 ? "" : "s",
-	    arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
-	    arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
-	    arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
-
-	malloc_printf("            allocated      nmalloc      ndalloc\n");
-	malloc_printf("small:   %12zu %12llu %12llu\n",
-	    arena->stats.allocated_small, arena->stats.nmalloc_small,
-	    arena->stats.ndalloc_small);
-	malloc_printf("large:   %12zu %12llu %12llu\n",
-	    arena->stats.allocated_large, arena->stats.nmalloc_large,
-	    arena->stats.ndalloc_large);
-	malloc_printf("total:   %12zu %12llu %12llu\n",
-	    arena->stats.allocated_small + arena->stats.allocated_large,
-	    arena->stats.nmalloc_small + arena->stats.nmalloc_large,
-	    arena->stats.ndalloc_small + arena->stats.ndalloc_large);
-	malloc_printf("mapped:  %12zu\n", arena->stats.mapped);
-
-#ifdef MALLOC_MAG
-	if (__isthreaded && opt_mag) {
-		malloc_printf("bins:     bin   size regs pgs      mags   "
-		    "newruns    reruns maxruns curruns\n");
-	} else {
-#endif
-		malloc_printf("bins:     bin   size regs pgs  requests   "
-		    "newruns    reruns maxruns curruns\n");
-#ifdef MALLOC_MAG
-	}
-#endif
-	for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
-		if (arena->bins[i].stats.nruns == 0) {
-			if (gap_start == UINT_MAX)
-				gap_start = i;
-		} else {
-			if (gap_start != UINT_MAX) {
-				if (i > gap_start + 1) {
-					/* Gap of more than one size class. */
-					malloc_printf("[%u..%u]\n",
-					    gap_start, i - 1);
-				} else {
-					/* Gap of one size class. */
-					malloc_printf("[%u]\n", gap_start);
-				}
-				gap_start = UINT_MAX;
-			}
-			malloc_printf(
-			    "%13u %1s %4u %4u %3u %9llu %9llu"
-			    " %9llu %7lu %7lu\n",
-			    i,
-			    i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
-			    i < ntbins + nqbins + ncbins ? "C" : "S",
-			    arena->bins[i].reg_size,
-			    arena->bins[i].nregs,
-			    arena->bins[i].run_size >> pagesize_2pow,
-#ifdef MALLOC_MAG
-			    (__isthreaded && opt_mag) ?
-			    arena->bins[i].stats.nmags :
-#endif
-			    arena->bins[i].stats.nrequests,
-			    arena->bins[i].stats.nruns,
-			    arena->bins[i].stats.reruns,
-			    arena->bins[i].stats.highruns,
-			    arena->bins[i].stats.curruns);
-		}
-	}
-	if (gap_start != UINT_MAX) {
-		if (i > gap_start + 1) {
-			/* Gap of more than one size class. */
-			malloc_printf("[%u..%u]\n", gap_start, i - 1);
-		} else {
-			/* Gap of one size class. */
-			malloc_printf("[%u]\n", gap_start);
-		}
-	}
-}
-#endif
-
-/*
- * End Utility functions/macros.
- */
-/******************************************************************************/
-/*
- * Begin extent tree code.
- */
-
-#ifdef MALLOC_DSS
-static inline int
-extent_szad_comp(extent_node_t *a, extent_node_t *b)
-{
-	int ret;
-	size_t a_size = a->size;
-	size_t b_size = b->size;
-
-	ret = (a_size > b_size) - (a_size < b_size);
-	if (ret == 0) {
-		uintptr_t a_addr = (uintptr_t)a->addr;
-		uintptr_t b_addr = (uintptr_t)b->addr;
-
-		ret = (a_addr > b_addr) - (a_addr < b_addr);
-	}
-
-	return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, extent_tree_szad_, extent_tree_t, extent_node_t,
-    link_szad, extent_szad_comp)
-#endif
-
-static inline int
-extent_ad_comp(extent_node_t *a, extent_node_t *b)
-{
-	uintptr_t a_addr = (uintptr_t)a->addr;
-	uintptr_t b_addr = (uintptr_t)b->addr;
-
-	return ((a_addr > b_addr) - (a_addr < b_addr));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
-    extent_ad_comp)
-
-/*
- * End extent tree code.
- */
-/******************************************************************************/
-/*
- * Begin chunk management functions.
- */
-
-static void *
-pages_map(void *addr, size_t size)
-{
-	void *ret;
-
-	/*
-	 * We don't use MAP_FIXED here, because it can cause the *replacement*
-	 * of existing mappings, and we only want to create new mappings.
-	 */
-	ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
-	    -1, 0);
-	assert(ret != NULL);
-
-	if (ret == MAP_FAILED)
-		ret = NULL;
-	else if (addr != NULL && ret != addr) {
-		/*
-		 * We succeeded in mapping memory, but not in the right place.
-		 */
-		if (munmap(ret, size) == -1) {
-			char buf[STRERROR_BUF];
-
-			strerror_r(errno, buf, sizeof(buf));
-			_malloc_message(_getprogname(),
-			    ": (malloc) Error in munmap(): ", buf, "\n");
-			if (opt_abort)
-				abort();
-		}
-		ret = NULL;
-	}
-
-	assert(ret == NULL || (addr == NULL && ret != addr)
-	    || (addr != NULL && ret == addr));
-	return (ret);
-}
-
-static void
-pages_unmap(void *addr, size_t size)
-{
-
-	if (munmap(addr, size) == -1) {
-		char buf[STRERROR_BUF];
-
-		strerror_r(errno, buf, sizeof(buf));
-		_malloc_message(_getprogname(),
-		    ": (malloc) Error in munmap(): ", buf, "\n");
-		if (opt_abort)
-			abort();
-	}
-}
-
-#ifdef MALLOC_DSS
-static void *
-chunk_alloc_dss(size_t size)
-{
-
-	/*
-	 * sbrk() uses a signed increment argument, so take care not to
-	 * interpret a huge allocation request as a negative increment.
-	 */
-	if ((intptr_t)size < 0)
-		return (NULL);
-
-	malloc_mutex_lock(&dss_mtx);
-	if (dss_prev != (void *)-1) {
-		intptr_t incr;
-
-		/*
-		 * The loop is necessary to recover from races with other
-		 * threads that are using the DSS for something other than
-		 * malloc.
-		 */
-		do {
-			void *ret;
-
-			/* Get the current end of the DSS. */
-			dss_max = sbrk(0);
-
-			/*
-			 * Calculate how much padding is necessary to
-			 * chunk-align the end of the DSS.
-			 */
-			incr = (intptr_t)size
-			    - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
-			if (incr == (intptr_t)size)
-				ret = dss_max;
-			else {
-				ret = (void *)((intptr_t)dss_max + incr);
-				incr += size;
-			}
-
-			dss_prev = sbrk(incr);
-			if (dss_prev == dss_max) {
-				/* Success. */
-				dss_max = (void *)((intptr_t)dss_prev + incr);
-				malloc_mutex_unlock(&dss_mtx);
-				return (ret);
-			}
-		} while (dss_prev != (void *)-1);
-	}
-	malloc_mutex_unlock(&dss_mtx);
-
-	return (NULL);
-}
-
-static void *
-chunk_recycle_dss(size_t size, bool zero)
-{
-	extent_node_t *node, key;
-
-	key.addr = NULL;
-	key.size = size;
-	malloc_mutex_lock(&dss_mtx);
-	node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
-	if (node != NULL) {
-		void *ret = node->addr;
-
-		/* Remove node from the tree. */
-		extent_tree_szad_remove(&dss_chunks_szad, node);
-		if (node->size == size) {
-			extent_tree_ad_remove(&dss_chunks_ad, node);
-			base_node_dealloc(node);
-		} else {
-			/*
-			 * Insert the remainder of node's address range as a
-			 * smaller chunk.  Its position within dss_chunks_ad
-			 * does not change.
-			 */
-			assert(node->size > size);
-			node->addr = (void *)((uintptr_t)node->addr + size);
-			node->size -= size;
-			extent_tree_szad_insert(&dss_chunks_szad, node);
-		}
-		malloc_mutex_unlock(&dss_mtx);
-
-		if (zero)
-			memset(ret, 0, size);
-		return (ret);
-	}
-	malloc_mutex_unlock(&dss_mtx);
-
-	return (NULL);
-}
-#endif
-
-static void *
-chunk_alloc_mmap(size_t size)
-{
-	void *ret;
-	size_t offset;
-
-	/*
-	 * Ideally, there would be a way to specify alignment to mmap() (like
-	 * NetBSD has), but in the absence of such a feature, we have to work
-	 * hard to efficiently create aligned mappings.  The reliable, but
-	 * expensive method is to create a mapping that is over-sized, then
-	 * trim the excess.  However, that always results in at least one call
-	 * to pages_unmap().
-	 *
-	 * A more optimistic approach is to try mapping precisely the right
-	 * amount, then try to append another mapping if alignment is off.  In
-	 * practice, this works out well as long as the application is not
-	 * interleaving mappings via direct mmap() calls.  If we do run into a
-	 * situation where there is an interleaved mapping and we are unable to
-	 * extend an unaligned mapping, our best option is to momentarily
-	 * revert to the reliable-but-expensive method.  This will tend to
-	 * leave a gap in the memory map that is too small to cause later
-	 * problems for the optimistic method.
-	 */
-
-	ret = pages_map(NULL, size);
-	if (ret == NULL)
-		return (NULL);
-
-	offset = CHUNK_ADDR2OFFSET(ret);
-	if (offset != 0) {
-		/* Try to extend chunk boundary. */
-		if (pages_map((void *)((uintptr_t)ret + size),
-		    chunksize - offset) == NULL) {
-			/*
-			 * Extension failed.  Clean up, then revert to the
-			 * reliable-but-expensive method.
-			 */
-			pages_unmap(ret, size);
-
-			/* Beware size_t wrap-around. */
-			if (size + chunksize <= size)
-				return NULL;
-
-			ret = pages_map(NULL, size + chunksize);
-			if (ret == NULL)
-				return (NULL);
-
-			/* Clean up unneeded leading/trailing space. */
-			offset = CHUNK_ADDR2OFFSET(ret);
-			if (offset != 0) {
-				/* Leading space. */
-				pages_unmap(ret, chunksize - offset);
-
-				ret = (void *)((uintptr_t)ret +
-				    (chunksize - offset));
-
-				/* Trailing space. */
-				pages_unmap((void *)((uintptr_t)ret + size),
-				    offset);
-			} else {
-				/* Trailing space only. */
-				pages_unmap((void *)((uintptr_t)ret + size),
-				    chunksize);
-			}
-		} else {
-			/* Clean up unneeded leading space. */
-			pages_unmap(ret, chunksize - offset);
-			ret = (void *)((uintptr_t)ret + (chunksize - offset));
-		}
-	}
-
-	return (ret);
-}
-
-static void *
-chunk_alloc(size_t size, bool zero)
-{
-	void *ret;
-
-	(void)zero; /* XXX */
-	assert(size != 0);
-	assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_DSS
-	if (opt_dss) {
-		ret = chunk_recycle_dss(size, zero);
-		if (ret != NULL) {
-			goto RETURN;
-		}
-
-		ret = chunk_alloc_dss(size);
-		if (ret != NULL)
-			goto RETURN;
-	}
-
-	if (opt_mmap)
-#endif
-	{
-		ret = chunk_alloc_mmap(size);
-		if (ret != NULL)
-			goto RETURN;
-	}
-
-	/* All strategies for allocation failed. */
-	ret = NULL;
-RETURN:
-#ifdef MALLOC_STATS
-	if (ret != NULL) {
-		stats_chunks.nchunks += (size / chunksize);
-		stats_chunks.curchunks += (size / chunksize);
-	}
-	if (stats_chunks.curchunks > stats_chunks.highchunks)
-		stats_chunks.highchunks = stats_chunks.curchunks;
-#endif
-
-	assert(CHUNK_ADDR2BASE(ret) == ret);
-	return (ret);
-}
-
-#ifdef MALLOC_DSS
-static extent_node_t *
-chunk_dealloc_dss_record(void *chunk, size_t size)
-{
-	extent_node_t *node, *prev, key;
-
-	key.addr = (void *)((uintptr_t)chunk + size);
-	node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
-	/* Try to coalesce forward. */
-	if (node != NULL && node->addr == key.addr) {
-		/*
-		 * Coalesce chunk with the following address range.  This does
-		 * not change the position within dss_chunks_ad, so only
-		 * remove/insert from/into dss_chunks_szad.
-		 */
-		extent_tree_szad_remove(&dss_chunks_szad, node);
-		node->addr = chunk;
-		node->size += size;
-		extent_tree_szad_insert(&dss_chunks_szad, node);
-	} else {
-		/*
-		 * Coalescing forward failed, so insert a new node.  Drop
-		 * dss_mtx during node allocation, since it is possible that a
-		 * new base chunk will be allocated.
-		 */
-		malloc_mutex_unlock(&dss_mtx);
-		node = base_node_alloc();
-		malloc_mutex_lock(&dss_mtx);
-		if (node == NULL)
-			return (NULL);
-		node->addr = chunk;
-		node->size = size;
-		extent_tree_ad_insert(&dss_chunks_ad, node);
-		extent_tree_szad_insert(&dss_chunks_szad, node);
-	}
-
-	/* Try to coalesce backward. */
-	prev = extent_tree_ad_prev(&dss_chunks_ad, node);
-	if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
-	    chunk) {
-		/*
-		 * Coalesce chunk with the previous address range.  This does
-		 * not change the position within dss_chunks_ad, so only
-		 * remove/insert node from/into dss_chunks_szad.
-		 */
-		extent_tree_szad_remove(&dss_chunks_szad, prev);
-		extent_tree_ad_remove(&dss_chunks_ad, prev);
-
-		extent_tree_szad_remove(&dss_chunks_szad, node);
-		node->addr = prev->addr;
-		node->size += prev->size;
-		extent_tree_szad_insert(&dss_chunks_szad, node);
-
-		base_node_dealloc(prev);
-	}
-
-	return (node);
-}
-
-static bool
-chunk_dealloc_dss(void *chunk, size_t size)
-{
-
-	malloc_mutex_lock(&dss_mtx);
-	if ((uintptr_t)chunk >= (uintptr_t)dss_base
-	    && (uintptr_t)chunk < (uintptr_t)dss_max) {
-		extent_node_t *node;
-
-		/* Try to coalesce with other unused chunks. */
-		node = chunk_dealloc_dss_record(chunk, size);
-		if (node != NULL) {
-			chunk = node->addr;
-			size = node->size;
-		}
-
-		/* Get the current end of the DSS. */
-		dss_max = sbrk(0);
-
-		/*
-		 * Try to shrink the DSS if this chunk is at the end of the
-		 * DSS.  The sbrk() call here is subject to a race condition
-		 * with threads that use brk(2) or sbrk(2) directly, but the
-		 * alternative would be to leak memory for the sake of poorly
-		 * designed multi-threaded programs.
-		 */
-		if ((void *)((uintptr_t)chunk + size) == dss_max
-		    && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
-			/* Success. */
-			dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
-
-			if (node != NULL) {
-				extent_tree_szad_remove(&dss_chunks_szad, node);
-				extent_tree_ad_remove(&dss_chunks_ad, node);
-				base_node_dealloc(node);
-			}
-			malloc_mutex_unlock(&dss_mtx);
-		} else {
-			malloc_mutex_unlock(&dss_mtx);
-			madvise(chunk, size, MADV_DONTNEED);
-		}
-
-		return (false);
-	}
-	malloc_mutex_unlock(&dss_mtx);
-
-	return (true);
-}
-#endif
-
-static void
-chunk_dealloc_mmap(void *chunk, size_t size)
-{
-
-	pages_unmap(chunk, size);
-}
-
-static void
-chunk_dealloc(void *chunk, size_t size)
-{
-
-	assert(chunk != NULL);
-	assert(CHUNK_ADDR2BASE(chunk) == chunk);
-	assert(size != 0);
-	assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_STATS
-	stats_chunks.curchunks -= (size / chunksize);
-#endif
-
-#ifdef MALLOC_DSS
-	if (opt_dss) {
-		if (chunk_dealloc_dss(chunk, size) == false)
-			return;
-	}
-
-	if (opt_mmap)
-#endif
-		chunk_dealloc_mmap(chunk, size);
-}
-
-/*
- * End chunk management functions.
- */
-/******************************************************************************/
-/*
- * Begin arena.
- */
-
-/*
- * Choose an arena based on a per-thread value (fast-path code, calls slow-path
- * code if necessary).
- */
-static inline arena_t *
-choose_arena(void)
-{
-	arena_t *ret;
-
-	/*
-	 * We can only use TLS if this is a PIC library, since for the static
-	 * library version, libc's malloc is used by TLS allocation, which
-	 * introduces a bootstrapping issue.
-	 */
-#ifndef NO_TLS
-	if (__isthreaded == false) {
-	    /* Avoid the overhead of TLS for single-threaded operation. */
-	    return (arenas[0]);
-	}
-
-	ret = arenas_map;
-	if (ret == NULL) {
-		ret = choose_arena_hard();
-		assert(ret != NULL);
-	}
-#else
-	if (__isthreaded && narenas > 1) {
-		unsigned long ind;
-
-		/*
-		 * Hash pthread_self() to one of the arenas.  There is a prime
-		 * number of arenas, so this has a reasonable chance of
-		 * working.  Even so, the hashing can be easily thwarted by
-		 * inconvenient pthread_self() values.  Without specific
-		 * knowledge of how pthread_self() calculates values, we can't
-		 * easily do much better than this.
-		 */
-		ind = (unsigned long) pthread_self() % narenas;
-
-		/*
-		 * Optimistially assume that arenas[ind] has been initialized.
-		 * At worst, we find out that some other thread has already
-		 * done so, after acquiring the lock in preparation.  Note that
-		 * this lazy locking also has the effect of lazily forcing
-		 * cache coherency; without the lock acquisition, there's no
-		 * guarantee that modification of arenas[ind] by another thread
-		 * would be seen on this CPU for an arbitrary amount of time.
-		 *
-		 * In general, this approach to modifying a synchronized value
-		 * isn't a good idea, but in this case we only ever modify the
-		 * value once, so things work out well.
-		 */
-		ret = arenas[ind];
-		if (ret == NULL) {
-			/*
-			 * Avoid races with another thread that may have already
-			 * initialized arenas[ind].
-			 */
-			malloc_spin_lock(&arenas_lock);
-			if (arenas[ind] == NULL)
-				ret = arenas_extend((unsigned)ind);
-			else
-				ret = arenas[ind];
-			malloc_spin_unlock(&arenas_lock);
-		}
-	} else
-		ret = arenas[0];
-#endif
-
-	assert(ret != NULL);
-	return (ret);
-}
-
-#ifndef NO_TLS
-/*
- * Choose an arena based on a per-thread value (slow-path code only, called
- * only by choose_arena()).
- */
-static arena_t *
-choose_arena_hard(void)
-{
-	arena_t *ret;
-
-	assert(__isthreaded);
-
-#ifdef MALLOC_BALANCE
-	/* Seed the PRNG used for arena load balancing. */
-	SPRN(balance, (uint32_t)(uintptr_t)(pthread_self()));
-#endif
-
-	if (narenas > 1) {
-#ifdef MALLOC_BALANCE
-		unsigned ind;
-
-		ind = PRN(balance, narenas_2pow);
-		if ((ret = arenas[ind]) == NULL) {
-			malloc_spin_lock(&arenas_lock);
-			if ((ret = arenas[ind]) == NULL)
-				ret = arenas_extend(ind);
-			malloc_spin_unlock(&arenas_lock);
-		}
-#else
-		malloc_spin_lock(&arenas_lock);
-		if ((ret = arenas[next_arena]) == NULL)
-			ret = arenas_extend(next_arena);
-		next_arena = (next_arena + 1) % narenas;
-		malloc_spin_unlock(&arenas_lock);
-#endif
-	} else
-		ret = arenas[0];
-
-	arenas_map = ret;
-
-	return (ret);
-}
-#endif
-
-static inline int
-arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
-{
-	uintptr_t a_chunk = (uintptr_t)a;
-	uintptr_t b_chunk = (uintptr_t)b;
-
-	assert(a != NULL);
-	assert(b != NULL);
-
-	return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, arena_chunk_tree_dirty_, arena_chunk_tree_t,
-    arena_chunk_t, link_dirty, arena_chunk_comp)
-
-static inline int
-arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
-	uintptr_t a_mapelm = (uintptr_t)a;
-	uintptr_t b_mapelm = (uintptr_t)b;
-
-	assert(a != NULL);
-	assert(b != NULL);
-
-	return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
-    link, arena_run_comp)
-
-static inline int
-arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
-	int ret;
-	size_t a_size = a->bits & ~pagesize_mask;
-	size_t b_size = b->bits & ~pagesize_mask;
-
-	ret = (a_size > b_size) - (a_size < b_size);
-	if (ret == 0) {
-		uintptr_t a_mapelm, b_mapelm;
-
-		if ((a->bits & CHUNK_MAP_KEY) == 0)
-			a_mapelm = (uintptr_t)a;
-		else {
-			/*
-			 * Treat keys as though they are lower than anything
-			 * else.
-			 */
-			a_mapelm = 0;
-		}
-		b_mapelm = (uintptr_t)b;
-
-		ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
-	}
-
-	return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, arena_avail_tree_, arena_avail_tree_t,
-    arena_chunk_map_t, link, arena_avail_comp)
-
-static inline void *
-arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
-{
-	void *ret;
-	unsigned i, mask, bit, regind;
-
-	assert(run->magic == ARENA_RUN_MAGIC);
-	assert(run->regs_minelm < bin->regs_mask_nelms);
-
-	/*
-	 * Move the first check outside the loop, so that run->regs_minelm can
-	 * be updated unconditionally, without the possibility of updating it
-	 * multiple times.
-	 */
-	i = run->regs_minelm;
-	mask = run->regs_mask[i];
-	if (mask != 0) {
-		/* Usable allocation found. */
-		bit = ffs((int)mask) - 1;
-
-		regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
-		assert(regind < bin->nregs);
-		ret = (void *)(((uintptr_t)run) + bin->reg0_offset
-		    + (bin->reg_size * regind));
-
-		/* Clear bit. */
-		mask ^= (1U << bit);
-		run->regs_mask[i] = mask;
-
-		return (ret);
-	}
-
-	for (i++; i < bin->regs_mask_nelms; i++) {
-		mask = run->regs_mask[i];
-		if (mask != 0) {
-			/* Usable allocation found. */
-			bit = ffs((int)mask) - 1;
-
-			regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
-			assert(regind < bin->nregs);
-			ret = (void *)(((uintptr_t)run) + bin->reg0_offset
-			    + (bin->reg_size * regind));
-
-			/* Clear bit. */
-			mask ^= (1U << bit);
-			run->regs_mask[i] = mask;
-
-			/*
-			 * Make a note that nothing before this element
-			 * contains a free region.
-			 */
-			run->regs_minelm = i; /* Low payoff: + (mask == 0); */
-
-			return (ret);
-		}
-	}
-	/* Not reached. */
-	assert(0);
-	return (NULL);
-}
-
-static inline void
-arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
-{
-	unsigned diff, regind, elm, bit;
-
-	assert(run->magic == ARENA_RUN_MAGIC);
-
-	/*
-	 * Avoid doing division with a variable divisor if possible.  Using
-	 * actual division here can reduce allocator throughput by over 20%!
-	 */
-	diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
-	if ((size & (size - 1)) == 0) {
-		/*
-		 * log2_table allows fast division of a power of two in the
-		 * [1..128] range.
-		 *
-		 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
-		 */
-		static const unsigned char log2_table[] = {
-		    0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
-		};
-
-		if (size <= 128)
-			regind = (diff >> log2_table[size - 1]);
-		else if (size <= 32768)
-			regind = diff >> (8 + log2_table[(size >> 8) - 1]);
-		else
-			regind = diff / size;
-	} else if (size < qspace_max) {
-		/*
-		 * To divide by a number D that is not a power of two we
-		 * multiply by (2^21 / D) and then right shift by 21 positions.
-		 *
-		 *   X / D
-		 *
-		 * becomes
-		 *
-		 *   (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
-		 *       >> SIZE_INV_SHIFT
-		 *
-		 * We can omit the first three elements, because we never
-		 * divide by 0, and QUANTUM and 2*QUANTUM are both powers of
-		 * two, which are handled above.
-		 */
-#define	SIZE_INV_SHIFT 21
-#define	QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
-		static const unsigned qsize_invs[] = {
-		    QSIZE_INV(3),
-		    QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
-#if (QUANTUM_2POW < 4)
-		    ,
-		    QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
-		    QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
-#endif
-		};
-		assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
-		    >= (1U << QSPACE_MAX_2POW_DEFAULT));
-
-		if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
-		    QUANTUM_2POW)) {
-			regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
-			regind >>= SIZE_INV_SHIFT;
-		} else
-			regind = diff / size;
-#undef QSIZE_INV
-	} else if (size < cspace_max) {
-#define	CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
-		static const unsigned csize_invs[] = {
-		    CSIZE_INV(3),
-		    CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
-		};
-		assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
-		    3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
-
-		if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
-		    CACHELINE_2POW)) {
-			regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
-			    diff;
-			regind >>= SIZE_INV_SHIFT;
-		} else
-			regind = diff / size;
-#undef CSIZE_INV
-	} else {
-#define	SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
-		static const unsigned ssize_invs[] = {
-		    SSIZE_INV(3),
-		    SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
-		    SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
-		    SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
-#if (PAGESIZE_2POW == 13)
-		    ,
-		    SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
-		    SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
-		    SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
-		    SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
-#endif
-		};
-		assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
-		    >= (1U << PAGESIZE_2POW));
-
-		if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
-		    SUBPAGE_2POW)) {
-			regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
-			regind >>= SIZE_INV_SHIFT;
-		} else
-			regind = diff / size;
-#undef SSIZE_INV
-	}
-#undef SIZE_INV_SHIFT
-	assert(diff == regind * size);
-	assert(regind < bin->nregs);
-
-	elm = regind >> (SIZEOF_INT_2POW + 3);
-	if (elm < run->regs_minelm)
-		run->regs_minelm = elm;
-	bit = regind - (elm << (SIZEOF_INT_2POW + 3));
-	assert((run->regs_mask[elm] & (1U << bit)) == 0);
-	run->regs_mask[elm] |= (1U << bit);
-}
-
-static void
-arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
-    bool zero)
-{
-	arena_chunk_t *chunk;
-	size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
-	old_ndirty = chunk->ndirty;
-	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
-	    >> pagesize_2pow);
-	total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
-	    pagesize_2pow;
-	need_pages = (size >> pagesize_2pow);
-	assert(need_pages > 0);
-	assert(need_pages <= total_pages);
-	rem_pages = total_pages - need_pages;
-
-	arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
-
-	/* Keep track of trailing unused pages for later use. */
-	if (rem_pages > 0) {
-		chunk->map[run_ind+need_pages].bits = (rem_pages <<
-		    pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
-		    pagesize_mask);
-		chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
-		    pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
-		    pagesize_mask);
-		arena_avail_tree_insert(&arena->runs_avail,
-		    &chunk->map[run_ind+need_pages]);
-	}
-
-	for (i = 0; i < need_pages; i++) {
-		/* Zero if necessary. */
-		if (zero) {
-			if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
-			    == 0) {
-				memset((void *)((uintptr_t)chunk + ((run_ind
-				    + i) << pagesize_2pow)), 0, pagesize);
-				/* CHUNK_MAP_ZEROED is cleared below. */
-			}
-		}
-
-		/* Update dirty page accounting. */
-		if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
-			chunk->ndirty--;
-			arena->ndirty--;
-			/* CHUNK_MAP_DIRTY is cleared below. */
-		}
-
-		/* Initialize the chunk map. */
-		if (large) {
-			chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
-			    | CHUNK_MAP_ALLOCATED;
-		} else {
-			chunk->map[run_ind + i].bits = (size_t)run
-			    | CHUNK_MAP_ALLOCATED;
-		}
-	}
-
-	/*
-	 * Set the run size only in the first element for large runs.  This is
-	 * primarily a debugging aid, since the lack of size info for trailing
-	 * pages only matters if the application tries to operate on an
-	 * interior pointer.
-	 */
-	if (large)
-		chunk->map[run_ind].bits |= size;
-
-	if (chunk->ndirty == 0 && old_ndirty > 0)
-		arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
-}
-
-static arena_chunk_t *
-arena_chunk_alloc(arena_t *arena)
-{
-	arena_chunk_t *chunk;
-	size_t i;
-
-	if (arena->spare != NULL) {
-		chunk = arena->spare;
-		arena->spare = NULL;
-	} else {
-		chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
-		if (chunk == NULL)
-			return (NULL);
-#ifdef MALLOC_STATS
-		arena->stats.mapped += chunksize;
-#endif
-
-		chunk->arena = arena;
-
-		/*
-		 * Claim that no pages are in use, since the header is merely
-		 * overhead.
-		 */
-		chunk->ndirty = 0;
-
-		/*
-		 * Initialize the map to contain one maximal free untouched run.
-		 */
-		for (i = 0; i < arena_chunk_header_npages; i++)
-			chunk->map[i].bits = 0;
-		chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
-		for (i++; i < chunk_npages-1; i++) {
-			chunk->map[i].bits = CHUNK_MAP_ZEROED;
-		}
-		chunk->map[chunk_npages-1].bits = arena_maxclass |
-		    CHUNK_MAP_ZEROED;
-	}
-
-	/* Insert the run into the runs_avail tree. */
-	arena_avail_tree_insert(&arena->runs_avail,
-	    &chunk->map[arena_chunk_header_npages]);
-
-	return (chunk);
-}
-
-static void
-arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
-{
-
-	if (arena->spare != NULL) {
-		if (arena->spare->ndirty > 0) {
-			arena_chunk_tree_dirty_remove(
-			    &chunk->arena->chunks_dirty, arena->spare);
-			arena->ndirty -= arena->spare->ndirty;
-		}
-		chunk_dealloc((void *)arena->spare, chunksize);
-#ifdef MALLOC_STATS
-		arena->stats.mapped -= chunksize;
-#endif
-	}
-
-	/*
-	 * Remove run from runs_avail, regardless of whether this chunk
-	 * will be cached, so that the arena does not use it.  Dirty page
-	 * flushing only uses the chunks_dirty tree, so leaving this chunk in
-	 * the chunks_* trees is sufficient for that purpose.
-	 */
-	arena_avail_tree_remove(&arena->runs_avail,
-	    &chunk->map[arena_chunk_header_npages]);
-
-	arena->spare = chunk;
-}
-
-static arena_run_t *
-arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
-{
-	arena_chunk_t *chunk;
-	arena_run_t *run;
-	arena_chunk_map_t *mapelm, key;
-
-	assert(size <= arena_maxclass);
-	assert((size & pagesize_mask) == 0);
-
-	/* Search the arena's chunks for the lowest best fit. */
-	key.bits = size | CHUNK_MAP_KEY;
-	mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
-	if (mapelm != NULL) {
-		arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
-		size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
-		    / sizeof(arena_chunk_map_t);
-
-		run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
-		    << pagesize_2pow));
-		arena_run_split(arena, run, size, large, zero);
-		return (run);
-	}
-
-	/*
-	 * No usable runs.  Create a new chunk from which to allocate the run.
-	 */
-	chunk = arena_chunk_alloc(arena);
-	if (chunk == NULL)
-		return (NULL);
-	run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
-	    pagesize_2pow));
-	/* Update page map. */
-	arena_run_split(arena, run, size, large, zero);
-	return (run);
-}
-
-static void
-arena_purge(arena_t *arena)
-{
-	arena_chunk_t *chunk;
-	size_t i, npages;
-#ifdef MALLOC_DEBUG
-	size_t ndirty = 0;
-
-	rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
-	    chunk) {
-		ndirty += chunk->ndirty;
-	} rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
-	assert(ndirty == arena->ndirty);
-#endif
-	assert(arena->ndirty > opt_dirty_max);
-
-#ifdef MALLOC_STATS
-	arena->stats.npurge++;
-#endif
-
-	/*
-	 * Iterate downward through chunks until enough dirty memory has been
-	 * purged.  Terminate as soon as possible in order to minimize the
-	 * number of system calls, even if a chunk has only been partially
-	 * purged.
-	 */
-	while (arena->ndirty > (opt_dirty_max >> 1)) {
-		chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
-		assert(chunk != NULL);
-
-		for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
-			assert(i >= arena_chunk_header_npages);
-
-			if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
-				chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
-				/* Find adjacent dirty run(s). */
-				for (npages = 1; i > arena_chunk_header_npages
-				    && (chunk->map[i - 1].bits &
-				    CHUNK_MAP_DIRTY); npages++) {
-					i--;
-					chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
-				}
-				chunk->ndirty -= npages;
-				arena->ndirty -= npages;
-
-				madvise((void *)((uintptr_t)chunk + (i <<
-				    pagesize_2pow)), (npages << pagesize_2pow),
-				    MADV_DONTNEED);
-#ifdef MALLOC_STATS
-				arena->stats.nmadvise++;
-				arena->stats.purged += npages;
-#endif
-				if (arena->ndirty <= (opt_dirty_max >> 1))
-					break;
-			}
-		}
-
-		if (chunk->ndirty == 0) {
-			arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
-			    chunk);
-		}
-	}
-}
-
-static void
-arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
-{
-	arena_chunk_t *chunk;
-	size_t size, run_ind, run_pages;
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
-	run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
-	    >> pagesize_2pow);
-	assert(run_ind >= arena_chunk_header_npages);
-	assert(run_ind < chunk_npages);
-	if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
-		size = chunk->map[run_ind].bits & ~pagesize_mask;
-	else
-		size = run->bin->run_size;
-	run_pages = (size >> pagesize_2pow);
-
-	/* Mark pages as unallocated in the chunk map. */
-	if (dirty) {
-		size_t i;
-
-		for (i = 0; i < run_pages; i++) {
-			assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
-			    == 0);
-			chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
-		}
-
-		if (chunk->ndirty == 0) {
-			arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
-			    chunk);
-		}
-		chunk->ndirty += run_pages;
-		arena->ndirty += run_pages;
-	} else {
-		size_t i;
-
-		for (i = 0; i < run_pages; i++) {
-			chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
-			    CHUNK_MAP_ALLOCATED);
-		}
-	}
-	chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
-	    pagesize_mask);
-	chunk->map[run_ind+run_pages-1].bits = size |
-	    (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-
-	/* Try to coalesce forward. */
-	if (run_ind + run_pages < chunk_npages &&
-	    (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
-		size_t nrun_size = chunk->map[run_ind+run_pages].bits &
-		    ~pagesize_mask;
-
-		/*
-		 * Remove successor from runs_avail; the coalesced run is
-		 * inserted later.
-		 */
-		arena_avail_tree_remove(&arena->runs_avail,
-		    &chunk->map[run_ind+run_pages]);
-
-		size += nrun_size;
-		run_pages = size >> pagesize_2pow;
-
-		assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
-		    == nrun_size);
-		chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
-		    pagesize_mask);
-		chunk->map[run_ind+run_pages-1].bits = size |
-		    (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-	}
-
-	/* Try to coalesce backward. */
-	if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
-	    CHUNK_MAP_ALLOCATED) == 0) {
-		size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
-
-		run_ind -= prun_size >> pagesize_2pow;
-
-		/*
-		 * Remove predecessor from runs_avail; the coalesced run is
-		 * inserted later.
-		 */
-		arena_avail_tree_remove(&arena->runs_avail,
-		    &chunk->map[run_ind]);
-
-		size += prun_size;
-		run_pages = size >> pagesize_2pow;
-
-		assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
-		    prun_size);
-		chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
-		    pagesize_mask);
-		chunk->map[run_ind+run_pages-1].bits = size |
-		    (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-	}
-
-	/* Insert into runs_avail, now that coalescing is complete. */
-	arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
-
-	/* Deallocate chunk if it is now completely unused. */
-	if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
-	    CHUNK_MAP_ALLOCATED)) == arena_maxclass)
-		arena_chunk_dealloc(arena, chunk);
-
-	/* Enforce opt_dirty_max. */
-	if (arena->ndirty > opt_dirty_max)
-		arena_purge(arena);
-}
-
-static void
-arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
-    size_t oldsize, size_t newsize)
-{
-	size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
-	size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
-
-	assert(oldsize > newsize);
-
-	/*
-	 * Update the chunk map so that arena_run_dalloc() can treat the
-	 * leading run as separately allocated.
-	 */
-	chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
-	    CHUNK_MAP_ALLOCATED;
-	chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
-	    CHUNK_MAP_ALLOCATED;
-
-	arena_run_dalloc(arena, run, false);
-}
-
-static void
-arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
-    size_t oldsize, size_t newsize, bool dirty)
-{
-	size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
-	size_t npages = newsize >> pagesize_2pow;
-
-	assert(oldsize > newsize);
-
-	/*
-	 * Update the chunk map so that arena_run_dalloc() can treat the
-	 * trailing run as separately allocated.
-	 */
-	chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
-	    CHUNK_MAP_ALLOCATED;
-	chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
-	    | CHUNK_MAP_ALLOCATED;
-
-	arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
-	    dirty);
-}
-
-static arena_run_t *
-arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
-{
-	arena_chunk_map_t *mapelm;
-	arena_run_t *run;
-	unsigned i, remainder;
-
-	/* Look for a usable run. */
-	mapelm = arena_run_tree_first(&bin->runs);
-	if (mapelm != NULL) {
-		/* run is guaranteed to have available space. */
-		arena_run_tree_remove(&bin->runs, mapelm);
-		run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-#ifdef MALLOC_STATS
-		bin->stats.reruns++;
-#endif
-		return (run);
-	}
-	/* No existing runs have any space available. */
-
-	/* Allocate a new run. */
-	run = arena_run_alloc(arena, bin->run_size, false, false);
-	if (run == NULL)
-		return (NULL);
-
-	/* Initialize run internals. */
-	run->bin = bin;
-
-	for (i = 0; i < bin->regs_mask_nelms - 1; i++)
-		run->regs_mask[i] = UINT_MAX;
-	remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
-	if (remainder == 0)
-		run->regs_mask[i] = UINT_MAX;
-	else {
-		/* The last element has spare bits that need to be unset. */
-		run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
-		    - remainder));
-	}
-
-	run->regs_minelm = 0;
-
-	run->nfree = bin->nregs;
-#ifdef MALLOC_DEBUG
-	run->magic = ARENA_RUN_MAGIC;
-#endif
-
-#ifdef MALLOC_STATS
-	bin->stats.nruns++;
-	bin->stats.curruns++;
-	if (bin->stats.curruns > bin->stats.highruns)
-		bin->stats.highruns = bin->stats.curruns;
-#endif
-	return (run);
-}
-
-/* bin->runcur must have space available before this function is called. */
-static inline void *
-arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
-{
-	void *ret;
-
-	(void)arena; /* XXX */
-	assert(run->magic == ARENA_RUN_MAGIC);
-	assert(run->nfree > 0);
-
-	ret = arena_run_reg_alloc(run, bin);
-	assert(ret != NULL);
-	run->nfree--;
-
-	return (ret);
-}
-
-/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
-static void *
-arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
-{
-
-	bin->runcur = arena_bin_nonfull_run_get(arena, bin);
-	if (bin->runcur == NULL)
-		return (NULL);
-	assert(bin->runcur->magic == ARENA_RUN_MAGIC);
-	assert(bin->runcur->nfree > 0);
-
-	return (arena_bin_malloc_easy(arena, bin, bin->runcur));
-}
-
-/*
- * Calculate bin->run_size such that it meets the following constraints:
- *
- *   *) bin->run_size >= min_run_size
- *   *) bin->run_size <= arena_maxclass
- *   *) bin->run_size <= RUN_MAX_SMALL
- *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
- *
- * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
- * also calculated here, since these settings are all interdependent.
- */
-static size_t
-arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
-{
-	size_t try_run_size, good_run_size;
-	unsigned good_nregs, good_mask_nelms, good_reg0_offset;
-	unsigned try_nregs, try_mask_nelms, try_reg0_offset;
-
-	assert(min_run_size >= pagesize);
-	assert(min_run_size <= arena_maxclass);
-	assert(min_run_size <= RUN_MAX_SMALL);
-
-	/*
-	 * Calculate known-valid settings before entering the run_size
-	 * expansion loop, so that the first part of the loop always copies
-	 * valid settings.
-	 *
-	 * The do..while loop iteratively reduces the number of regions until
-	 * the run header and the regions no longer overlap.  A closed formula
-	 * would be quite messy, since there is an interdependency between the
-	 * header's mask length and the number of regions.
-	 */
-	try_run_size = min_run_size;
-	try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
-	    + 1; /* Counter-act try_nregs-- in loop. */
-	do {
-		try_nregs--;
-		try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
-		    ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
-		try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
-	} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
-	    > try_reg0_offset);
-
-	/* run_size expansion loop. */
-	do {
-		/*
-		 * Copy valid settings before trying more aggressive settings.
-		 */
-		good_run_size = try_run_size;
-		good_nregs = try_nregs;
-		good_mask_nelms = try_mask_nelms;
-		good_reg0_offset = try_reg0_offset;
-
-		/* Try more aggressive settings. */
-		try_run_size += pagesize;
-		try_nregs = ((try_run_size - sizeof(arena_run_t)) /
-		    bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
-		do {
-			try_nregs--;
-			try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
-			    ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
-			    1 : 0);
-			try_reg0_offset = try_run_size - (try_nregs *
-			    bin->reg_size);
-		} while (sizeof(arena_run_t) + (sizeof(unsigned) *
-		    (try_mask_nelms - 1)) > try_reg0_offset);
-	} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
-	    && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
-	    && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
-
-	assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
-	    <= good_reg0_offset);
-	assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
-
-	/* Copy final settings. */
-	bin->run_size = good_run_size;
-	bin->nregs = good_nregs;
-	bin->regs_mask_nelms = good_mask_nelms;
-	bin->reg0_offset = good_reg0_offset;
-
-	return (good_run_size);
-}
-
-#ifdef MALLOC_BALANCE
-static inline void
-arena_lock_balance(arena_t *arena)
-{
-	unsigned contention;
-
-	contention = malloc_spin_lock(&arena->lock);
-	if (narenas > 1) {
-		/*
-		 * Calculate the exponentially averaged contention for this
-		 * arena.  Due to integer math always rounding down, this value
-		 * decays somewhat faster than normal.
-		 */
-		arena->contention = (((uint64_t)arena->contention
-		    * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
-		    + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
-		if (arena->contention >= opt_balance_threshold)
-			arena_lock_balance_hard(arena);
-	}
-}
-
-static void
-arena_lock_balance_hard(arena_t *arena)
-{
-	uint32_t ind;
-
-	arena->contention = 0;
-#ifdef MALLOC_STATS
-	arena->stats.nbalance++;
-#endif
-	ind = PRN(balance, narenas_2pow);
-	if (arenas[ind] != NULL)
-		arenas_map = arenas[ind];
-	else {
-		malloc_spin_lock(&arenas_lock);
-		if (arenas[ind] != NULL)
-			arenas_map = arenas[ind];
-		else
-			arenas_map = arenas_extend(ind);
-		malloc_spin_unlock(&arenas_lock);
-	}
-}
-#endif
-
-#ifdef MALLOC_MAG
-static inline void *
-mag_alloc(mag_t *mag)
-{
-
-	if (mag->nrounds == 0)
-		return (NULL);
-	mag->nrounds--;
-
-	return (mag->rounds[mag->nrounds]);
-}
-
-static void
-mag_load(mag_t *mag)
-{
-	arena_t *arena;
-	arena_bin_t *bin;
-	arena_run_t *run;
-	void *round;
-	size_t i;
-
-	arena = choose_arena();
-	bin = &arena->bins[mag->binind];
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	for (i = mag->nrounds; i < max_rounds; i++) {
-		if ((run = bin->runcur) != NULL && run->nfree > 0)
-			round = arena_bin_malloc_easy(arena, bin, run);
-		else
-			round = arena_bin_malloc_hard(arena, bin);
-		if (round == NULL)
-			break;
-		mag->rounds[i] = round;
-	}
-#ifdef MALLOC_STATS
-	bin->stats.nmags++;
-	arena->stats.nmalloc_small += (i - mag->nrounds);
-	arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-	mag->nrounds = i;
-}
-
-static inline void *
-mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
-{
-	void *ret;
-	bin_mags_t *bin_mags;
-	mag_t *mag;
-	size_t binind;
-
-	binind = size2bin[size];
-	assert(binind < nbins);
-	bin_mags = &rack->bin_mags[binind];
-
-	mag = bin_mags->curmag;
-	if (mag == NULL) {
-		/* Create an initial magazine for this size class. */
-		assert(bin_mags->sparemag == NULL);
-		mag = mag_create(choose_arena(), binind);
-		if (mag == NULL)
-			return (NULL);
-		bin_mags->curmag = mag;
-		mag_load(mag);
-	}
-
-	ret = mag_alloc(mag);
-	if (ret == NULL) {
-		if (bin_mags->sparemag != NULL) {
-			if (bin_mags->sparemag->nrounds > 0) {
-				/* Swap magazines. */
-				bin_mags->curmag = bin_mags->sparemag;
-				bin_mags->sparemag = mag;
-				mag = bin_mags->curmag;
-			} else {
-				/* Reload the current magazine. */
-				mag_load(mag);
-			}
-		} else {
-			/* Create a second magazine. */
-			mag = mag_create(choose_arena(), binind);
-			if (mag == NULL)
-				return (NULL);
-			mag_load(mag);
-			bin_mags->sparemag = bin_mags->curmag;
-			bin_mags->curmag = mag;
-		}
-		ret = mag_alloc(mag);
-		if (ret == NULL)
-			return (NULL);
-	}
-
-	if (zero == false) {
-		if (opt_junk)
-			memset(ret, 0xa5, size);
-		else if (opt_zero)
-			memset(ret, 0, size);
-	} else
-		memset(ret, 0, size);
-
-	return (ret);
-}
-#endif
-
-static inline void *
-arena_malloc_small(arena_t *arena, size_t size, bool zero)
-{
-	void *ret;
-	arena_bin_t *bin;
-	arena_run_t *run;
-	size_t binind;
-
-	binind = size2bin[size];
-	assert(binind < nbins);
-	bin = &arena->bins[binind];
-	size = bin->reg_size;
-
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	if ((run = bin->runcur) != NULL && run->nfree > 0)
-		ret = arena_bin_malloc_easy(arena, bin, run);
-	else
-		ret = arena_bin_malloc_hard(arena, bin);
-
-	if (ret == NULL) {
-		malloc_spin_unlock(&arena->lock);
-		return (NULL);
-	}
-
-#ifdef MALLOC_STATS
-	bin->stats.nrequests++;
-	arena->stats.nmalloc_small++;
-	arena->stats.allocated_small += size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-
-	if (zero == false) {
-		if (opt_junk)
-			memset(ret, 0xa5, size);
-		else if (opt_zero)
-			memset(ret, 0, size);
-	} else
-		memset(ret, 0, size);
-
-	return (ret);
-}
-
-static void *
-arena_malloc_large(arena_t *arena, size_t size, bool zero)
-{
-	void *ret;
-
-	/* Large allocation. */
-	size = PAGE_CEILING(size);
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	ret = (void *)arena_run_alloc(arena, size, true, zero);
-	if (ret == NULL) {
-		malloc_spin_unlock(&arena->lock);
-		return (NULL);
-	}
-#ifdef MALLOC_STATS
-	arena->stats.nmalloc_large++;
-	arena->stats.allocated_large += size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-
-	if (zero == false) {
-		if (opt_junk)
-			memset(ret, 0xa5, size);
-		else if (opt_zero)
-			memset(ret, 0, size);
-	}
-
-	return (ret);
-}
-
-static inline void *
-arena_malloc(arena_t *arena, size_t size, bool zero)
-{
-
-	assert(arena != NULL);
-	assert(arena->magic == ARENA_MAGIC);
-	assert(size != 0);
-	assert(QUANTUM_CEILING(size) <= arena_maxclass);
-
-	if (size <= bin_maxclass) {
-#ifdef MALLOC_MAG
-		if (__isthreaded && opt_mag) {
-			mag_rack_t *rack = mag_rack;
-			if (rack == NULL) {
-				rack = mag_rack_create(arena);
-				if (rack == NULL)
-					return (NULL);
-				mag_rack = rack;
-			}
-			return (mag_rack_alloc(rack, size, zero));
-		} else
-#endif
-			return (arena_malloc_small(arena, size, zero));
-	} else
-		return (arena_malloc_large(arena, size, zero));
-}
-
-static inline void *
-imalloc(size_t size)
-{
-
-	assert(size != 0);
-
-	if (size <= arena_maxclass)
-		return (arena_malloc(choose_arena(), size, false));
-	else
-		return (huge_malloc(size, false));
-}
-
-static inline void *
-icalloc(size_t size)
-{
-
-	if (size <= arena_maxclass)
-		return (arena_malloc(choose_arena(), size, true));
-	else
-		return (huge_malloc(size, true));
-}
-
-/* Only handles large allocations that require more than page alignment. */
-static void *
-arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
-{
-	void *ret;
-	size_t offset;
-	arena_chunk_t *chunk;
-
-	assert((size & pagesize_mask) == 0);
-	assert((alignment & pagesize_mask) == 0);
-
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
-	if (ret == NULL) {
-		malloc_spin_unlock(&arena->lock);
-		return (NULL);
-	}
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
-
-	offset = (uintptr_t)ret & (alignment - 1);
-	assert((offset & pagesize_mask) == 0);
-	assert(offset < alloc_size);
-	if (offset == 0)
-		arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
-	else {
-		size_t leadsize, trailsize;
-
-		leadsize = alignment - offset;
-		if (leadsize > 0) {
-			arena_run_trim_head(arena, chunk, ret, alloc_size,
-			    alloc_size - leadsize);
-			ret = (void *)((uintptr_t)ret + leadsize);
-		}
-
-		trailsize = alloc_size - leadsize - size;
-		if (trailsize != 0) {
-			/* Trim trailing space. */
-			assert(trailsize < alloc_size);
-			arena_run_trim_tail(arena, chunk, ret, size + trailsize,
-			    size, false);
-		}
-	}
-
-#ifdef MALLOC_STATS
-	arena->stats.nmalloc_large++;
-	arena->stats.allocated_large += size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-
-	if (opt_junk)
-		memset(ret, 0xa5, size);
-	else if (opt_zero)
-		memset(ret, 0, size);
-	return (ret);
-}
-
-static inline void *
-ipalloc(size_t alignment, size_t size)
-{
-	void *ret;
-	size_t ceil_size;
-
-	/*
-	 * Round size up to the nearest multiple of alignment.
-	 *
-	 * This done, we can take advantage of the fact that for each small
-	 * size class, every object is aligned at the smallest power of two
-	 * that is non-zero in the base two representation of the size.  For
-	 * example:
-	 *
-	 *   Size |   Base 2 | Minimum alignment
-	 *   -----+----------+------------------
-	 *     96 |  1100000 |  32
-	 *    144 | 10100000 |  32
-	 *    192 | 11000000 |  64
-	 *
-	 * Depending on runtime settings, it is possible that arena_malloc()
-	 * will further round up to a power of two, but that never causes
-	 * correctness issues.
-	 */
-	ceil_size = (size + (alignment - 1)) & (-alignment);
-	/*
-	 * (ceil_size < size) protects against the combination of maximal
-	 * alignment and size greater than maximal alignment.
-	 */
-	if (ceil_size < size) {
-		/* size_t overflow. */
-		return (NULL);
-	}
-
-	if (ceil_size <= pagesize || (alignment <= pagesize
-	    && ceil_size <= arena_maxclass))
-		ret = arena_malloc(choose_arena(), ceil_size, false);
-	else {
-		size_t run_size;
-
-		/*
-		 * We can't achieve subpage alignment, so round up alignment
-		 * permanently; it makes later calculations simpler.
-		 */
-		alignment = PAGE_CEILING(alignment);
-		ceil_size = PAGE_CEILING(size);
-		/*
-		 * (ceil_size < size) protects against very large sizes within
-		 * pagesize of SIZE_T_MAX.
-		 *
-		 * (ceil_size + alignment < ceil_size) protects against the
-		 * combination of maximal alignment and ceil_size large enough
-		 * to cause overflow.  This is similar to the first overflow
-		 * check above, but it needs to be repeated due to the new
-		 * ceil_size value, which may now be *equal* to maximal
-		 * alignment, whereas before we only detected overflow if the
-		 * original size was *greater* than maximal alignment.
-		 */
-		if (ceil_size < size || ceil_size + alignment < ceil_size) {
-			/* size_t overflow. */
-			return (NULL);
-		}
-
-		/*
-		 * Calculate the size of the over-size run that arena_palloc()
-		 * would need to allocate in order to guarantee the alignment.
-		 */
-		if (ceil_size >= alignment)
-			run_size = ceil_size + alignment - pagesize;
-		else {
-			/*
-			 * It is possible that (alignment << 1) will cause
-			 * overflow, but it doesn't matter because we also
-			 * subtract pagesize, which in the case of overflow
-			 * leaves us with a very large run_size.  That causes
-			 * the first conditional below to fail, which means
-			 * that the bogus run_size value never gets used for
-			 * anything important.
-			 */
-			run_size = (alignment << 1) - pagesize;
-		}
-
-		if (run_size <= arena_maxclass) {
-			ret = arena_palloc(choose_arena(), alignment, ceil_size,
-			    run_size);
-		} else if (alignment <= chunksize)
-			ret = huge_malloc(ceil_size, false);
-		else
-			ret = huge_palloc(alignment, ceil_size);
-	}
-
-	assert(((uintptr_t)ret & (alignment - 1)) == 0);
-	return (ret);
-}
-
-/* Return the size of the allocation pointed to by ptr. */
-static size_t
-arena_salloc(const void *ptr)
-{
-	size_t ret;
-	arena_chunk_t *chunk;
-	size_t pageind, mapbits;
-
-	assert(ptr != NULL);
-	assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
-	mapbits = chunk->map[pageind].bits;
-	assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
-	if ((mapbits & CHUNK_MAP_LARGE) == 0) {
-		arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
-		assert(run->magic == ARENA_RUN_MAGIC);
-		ret = run->bin->reg_size;
-	} else {
-		ret = mapbits & ~pagesize_mask;
-		assert(ret != 0);
-	}
-
-	return (ret);
-}
-
-static inline size_t
-isalloc(const void *ptr)
-{
-	size_t ret;
-	arena_chunk_t *chunk;
-
-	assert(ptr != NULL);
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-	if (chunk != ptr) {
-		/* Region. */
-		assert(chunk->arena->magic == ARENA_MAGIC);
-
-		ret = arena_salloc(ptr);
-	} else {
-		extent_node_t *node, key;
-
-		/* Chunk (huge allocation). */
-
-		malloc_mutex_lock(&huge_mtx);
-
-		/* Extract from tree of huge allocations. */
-		key.addr = __DECONST(void *, ptr);
-		node = extent_tree_ad_search(&huge, &key);
-		assert(node != NULL);
-
-		ret = node->size;
-
-		malloc_mutex_unlock(&huge_mtx);
-	}
-
-	return (ret);
-}
-
-static inline void
-arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
-    arena_chunk_map_t *mapelm)
-{
-	arena_run_t *run;
-	arena_bin_t *bin;
-	size_t size;
-
-	run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-	assert(run->magic == ARENA_RUN_MAGIC);
-	bin = run->bin;
-	size = bin->reg_size;
-
-	if (opt_junk)
-		memset(ptr, 0x5a, size);
-
-	arena_run_reg_dalloc(run, bin, ptr, size);
-	run->nfree++;
-
-	if (run->nfree == bin->nregs) {
-		/* Deallocate run. */
-		if (run == bin->runcur)
-			bin->runcur = NULL;
-		else if (bin->nregs != 1) {
-			size_t run_pageind = (((uintptr_t)run -
-			    (uintptr_t)chunk)) >> pagesize_2pow;
-			arena_chunk_map_t *run_mapelm =
-			    &chunk->map[run_pageind];
-			/*
-			 * This block's conditional is necessary because if the
-			 * run only contains one region, then it never gets
-			 * inserted into the non-full runs tree.
-			 */
-			arena_run_tree_remove(&bin->runs, run_mapelm);
-		}
-#ifdef MALLOC_DEBUG
-		run->magic = 0;
-#endif
-		arena_run_dalloc(arena, run, true);
-#ifdef MALLOC_STATS
-		bin->stats.curruns--;
-#endif
-	} else if (run->nfree == 1 && run != bin->runcur) {
-		/*
-		 * Make sure that bin->runcur always refers to the lowest
-		 * non-full run, if one exists.
-		 */
-		if (bin->runcur == NULL)
-			bin->runcur = run;
-		else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
-			/* Switch runcur. */
-			if (bin->runcur->nfree > 0) {
-				arena_chunk_t *runcur_chunk =
-				    CHUNK_ADDR2BASE(bin->runcur);
-				size_t runcur_pageind =
-				    (((uintptr_t)bin->runcur -
-				    (uintptr_t)runcur_chunk)) >> pagesize_2pow;
-				arena_chunk_map_t *runcur_mapelm =
-				    &runcur_chunk->map[runcur_pageind];
-
-				/* Insert runcur. */
-				arena_run_tree_insert(&bin->runs,
-				    runcur_mapelm);
-			}
-			bin->runcur = run;
-		} else {
-			size_t run_pageind = (((uintptr_t)run -
-			    (uintptr_t)chunk)) >> pagesize_2pow;
-			arena_chunk_map_t *run_mapelm =
-			    &chunk->map[run_pageind];
-
-			assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
-			    NULL);
-			arena_run_tree_insert(&bin->runs, run_mapelm);
-		}
-	}
-#ifdef MALLOC_STATS
-	arena->stats.allocated_small -= size;
-	arena->stats.ndalloc_small++;
-#endif
-}
-
-#ifdef MALLOC_MAG
-static void
-mag_unload(mag_t *mag)
-{
-	arena_chunk_t *chunk;
-	arena_t *arena;
-	void *round;
-	size_t i, ndeferred, nrounds;
-
-	for (ndeferred = mag->nrounds; ndeferred > 0;) {
-		nrounds = ndeferred;
-		/* Lock the arena associated with the first round. */
-		chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
-		arena = chunk->arena;
-#ifdef MALLOC_BALANCE
-		arena_lock_balance(arena);
-#else
-		malloc_spin_lock(&arena->lock);
-#endif
-		/* Deallocate every round that belongs to the locked arena. */
-		for (i = ndeferred = 0; i < nrounds; i++) {
-			round = mag->rounds[i];
-			chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
-			if (chunk->arena == arena) {
-				size_t pageind = (((uintptr_t)round -
-				    (uintptr_t)chunk) >> pagesize_2pow);
-				arena_chunk_map_t *mapelm =
-				    &chunk->map[pageind];
-				arena_dalloc_small(arena, chunk, round, mapelm);
-			} else {
-				/*
-				 * This round was allocated via a different
-				 * arena than the one that is currently locked.
-				 * Stash the round, so that it can be handled
-				 * in a future pass.
-				 */
-				mag->rounds[ndeferred] = round;
-				ndeferred++;
-			}
-		}
-		malloc_spin_unlock(&arena->lock);
-	}
-
-	mag->nrounds = 0;
-}
-
-static inline void
-mag_rack_dalloc(mag_rack_t *rack, void *ptr)
-{
-	arena_t *arena;
-	arena_chunk_t *chunk;
-	arena_run_t *run;
-	arena_bin_t *bin;
-	bin_mags_t *bin_mags;
-	mag_t *mag;
-	size_t pageind, binind;
-	arena_chunk_map_t *mapelm;
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-	arena = chunk->arena;
-	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
-	mapelm = &chunk->map[pageind];
-	run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-	assert(run->magic == ARENA_RUN_MAGIC);
-	bin = run->bin;
-	binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
-	    sizeof(arena_bin_t);
-	assert(binind < nbins);
-
-	if (opt_junk)
-		memset(ptr, 0x5a, arena->bins[binind].reg_size);
-
-	bin_mags = &rack->bin_mags[binind];
-	mag = bin_mags->curmag;
-	if (mag == NULL) {
-		/* Create an initial magazine for this size class. */
-		assert(bin_mags->sparemag == NULL);
-		mag = mag_create(choose_arena(), binind);
-		if (mag == NULL) {
-			malloc_spin_lock(&arena->lock);
-			arena_dalloc_small(arena, chunk, ptr, mapelm);
-			malloc_spin_unlock(&arena->lock);
-			return;
-		}
-		bin_mags->curmag = mag;
-	}
-
-	if (mag->nrounds == max_rounds) {
-		if (bin_mags->sparemag != NULL) {
-			if (bin_mags->sparemag->nrounds < max_rounds) {
-				/* Swap magazines. */
-				bin_mags->curmag = bin_mags->sparemag;
-				bin_mags->sparemag = mag;
-				mag = bin_mags->curmag;
-			} else {
-				/* Unload the current magazine. */
-				mag_unload(mag);
-			}
-		} else {
-			/* Create a second magazine. */
-			mag = mag_create(choose_arena(), binind);
-			if (mag == NULL) {
-				mag = rack->bin_mags[binind].curmag;
-				mag_unload(mag);
-			} else {
-				bin_mags->sparemag = bin_mags->curmag;
-				bin_mags->curmag = mag;
-			}
-		}
-		assert(mag->nrounds < max_rounds);
-	}
-	mag->rounds[mag->nrounds] = ptr;
-	mag->nrounds++;
-}
-#endif
-
-static void
-arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
-	/* Large allocation. */
-	malloc_spin_lock(&arena->lock);
-
-#ifndef MALLOC_STATS
-	if (opt_junk)
-#endif
-	{
-		size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
-		    pagesize_2pow;
-		size_t size = chunk->map[pageind].bits & ~pagesize_mask;
-
-#ifdef MALLOC_STATS
-		if (opt_junk)
-#endif
-			memset(ptr, 0x5a, size);
-#ifdef MALLOC_STATS
-		arena->stats.allocated_large -= size;
-#endif
-	}
-#ifdef MALLOC_STATS
-	arena->stats.ndalloc_large++;
-#endif
-
-	arena_run_dalloc(arena, (arena_run_t *)ptr, true);
-	malloc_spin_unlock(&arena->lock);
-}
-
-static inline void
-arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
-	size_t pageind;
-	arena_chunk_map_t *mapelm;
-
-	assert(arena != NULL);
-	assert(arena->magic == ARENA_MAGIC);
-	assert(chunk->arena == arena);
-	assert(ptr != NULL);
-	assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
-	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
-	mapelm = &chunk->map[pageind];
-	assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
-	if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
-		/* Small allocation. */
-#ifdef MALLOC_MAG
-		if (__isthreaded && opt_mag) {
-			mag_rack_t *rack = mag_rack;
-			if (rack == NULL) {
-				rack = mag_rack_create(arena);
-				if (rack == NULL) {
-					malloc_spin_lock(&arena->lock);
-					arena_dalloc_small(arena, chunk, ptr,
-					    mapelm);
-					malloc_spin_unlock(&arena->lock);
-				}
-				mag_rack = rack;
-			}
-			mag_rack_dalloc(rack, ptr);
-		} else {
-#endif
-			malloc_spin_lock(&arena->lock);
-			arena_dalloc_small(arena, chunk, ptr, mapelm);
-			malloc_spin_unlock(&arena->lock);
-#ifdef MALLOC_MAG
-		}
-#endif
-	} else
-		arena_dalloc_large(arena, chunk, ptr);
-}
-
-static inline void
-idalloc(void *ptr)
-{
-	arena_chunk_t *chunk;
-
-	assert(ptr != NULL);
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-	if (chunk != ptr)
-		arena_dalloc(chunk->arena, chunk, ptr);
-	else
-		huge_dalloc(ptr);
-}
-
-static void
-arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
-    size_t size, size_t oldsize)
-{
-
-	assert(size < oldsize);
-
-	/*
-	 * Shrink the run, and make trailing pages available for other
-	 * allocations.
-	 */
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
-	    true);
-#ifdef MALLOC_STATS
-	arena->stats.allocated_large -= oldsize - size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-}
-
-static bool
-arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
-    size_t size, size_t oldsize)
-{
-	size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
-	size_t npages = oldsize >> pagesize_2pow;
-
-	assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
-
-	/* Try to extend the run. */
-	assert(size > oldsize);
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
-	    & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
-	    ~pagesize_mask) >= size - oldsize) {
-		/*
-		 * The next run is available and sufficiently large.  Split the
-		 * following run, then merge the first part with the existing
-		 * allocation.
-		 */
-		arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
-		    ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
-		    false);
-
-		chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
-		    CHUNK_MAP_ALLOCATED;
-		chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
-		    CHUNK_MAP_ALLOCATED;
-
-#ifdef MALLOC_STATS
-		arena->stats.allocated_large += size - oldsize;
-#endif
-		malloc_spin_unlock(&arena->lock);
-		return (false);
-	}
-	malloc_spin_unlock(&arena->lock);
-
-	return (true);
-}
-
-/*
- * Try to resize a large allocation, in order to avoid copying.  This will
- * always fail if growing an object, and the following run is already in use.
- */
-static bool
-arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
-{
-	size_t psize;
-
-	psize = PAGE_CEILING(size);
-	if (psize == oldsize) {
-		/* Same size class. */
-		if (opt_junk && size < oldsize) {
-			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
-			    size);
-		}
-		return (false);
-	} else {
-		arena_chunk_t *chunk;
-		arena_t *arena;
-
-		chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-		arena = chunk->arena;
-		assert(arena->magic == ARENA_MAGIC);
-
-		if (psize < oldsize) {
-			/* Fill before shrinking in order avoid a race. */
-			if (opt_junk) {
-				memset((void *)((uintptr_t)ptr + size), 0x5a,
-				    oldsize - size);
-			}
-			arena_ralloc_large_shrink(arena, chunk, ptr, psize,
-			    oldsize);
-			return (false);
-		} else {
-			bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
-			    psize, oldsize);
-			if (ret == false && opt_zero) {
-				memset((void *)((uintptr_t)ptr + oldsize), 0,
-				    size - oldsize);
-			}
-			return (ret);
-		}
-	}
-}
-
-static void *
-arena_ralloc(void *ptr, size_t size, size_t oldsize)
-{
-	void *ret;
-	size_t copysize;
-
-	/* Try to avoid moving the allocation. */
-	if (size <= bin_maxclass) {
-		if (oldsize <= bin_maxclass && size2bin[size] ==
-		    size2bin[oldsize])
-			goto IN_PLACE;
-	} else {
-		if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
-			assert(size > bin_maxclass);
-			if (arena_ralloc_large(ptr, size, oldsize) == false)
-				return (ptr);
-		}
-	}
-
-	/*
-	 * If we get here, then size and oldsize are different enough that we
-	 * need to move the object.  In that case, fall back to allocating new
-	 * space and copying.
-	 */
-	ret = arena_malloc(choose_arena(), size, false);
-	if (ret == NULL)
-		return (NULL);
-
-	/* Junk/zero-filling were already done by arena_malloc(). */
-	copysize = (size < oldsize) ? size : oldsize;
-	memcpy(ret, ptr, copysize);
-	idalloc(ptr);
-	return (ret);
-IN_PLACE:
-	if (opt_junk && size < oldsize)
-		memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
-	else if (opt_zero && size > oldsize)
-		memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
-	return (ptr);
-}
-
-static inline void *
-iralloc(void *ptr, size_t size)
-{
-	size_t oldsize;
-
-	assert(ptr != NULL);
-	assert(size != 0);
-
-	oldsize = isalloc(ptr);
-
-	if (size <= arena_maxclass)
-		return (arena_ralloc(ptr, size, oldsize));
-	else
-		return (huge_ralloc(ptr, size, oldsize));
-}
-
-static bool
-arena_new(arena_t *arena)
-{
-	unsigned i;
-	arena_bin_t *bin;
-	size_t prev_run_size;
-
-	if (malloc_spin_init(&arena->lock))
-		return (true);
-
-#ifdef MALLOC_STATS
-	memset(&arena->stats, 0, sizeof(arena_stats_t));
-#endif
-
-	/* Initialize chunks. */
-	arena_chunk_tree_dirty_new(&arena->chunks_dirty);
-	arena->spare = NULL;
-
-	arena->ndirty = 0;
-
-	arena_avail_tree_new(&arena->runs_avail);
-
-#ifdef MALLOC_BALANCE
-	arena->contention = 0;
-#endif
-
-	/* Initialize bins. */
-	prev_run_size = pagesize;
-
-	i = 0;
-#ifdef MALLOC_TINY
-	/* (2^n)-spaced tiny bins. */
-	for (; i < ntbins; i++) {
-		bin = &arena->bins[i];
-		bin->runcur = NULL;
-		arena_run_tree_new(&bin->runs);
-
-		bin->reg_size = (1U << (TINY_MIN_2POW + i));
-
-		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
-		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
-	}
-#endif
-
-	/* Quantum-spaced bins. */
-	for (; i < ntbins + nqbins; i++) {
-		bin = &arena->bins[i];
-		bin->runcur = NULL;
-		arena_run_tree_new(&bin->runs);
-
-		bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
-
-		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
-		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
-	}
-
-	/* Cacheline-spaced bins. */
-	for (; i < ntbins + nqbins + ncbins; i++) {
-		bin = &arena->bins[i];
-		bin->runcur = NULL;
-		arena_run_tree_new(&bin->runs);
-
-		bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
-		    CACHELINE_2POW);
-
-		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
-		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
-	}
-
-	/* Subpage-spaced bins. */
-	for (; i < nbins; i++) {
-		bin = &arena->bins[i];
-		bin->runcur = NULL;
-		arena_run_tree_new(&bin->runs);
-
-		bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
-		    << SUBPAGE_2POW);
-
-		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
-		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
-	}
-
-#ifdef MALLOC_DEBUG
-	arena->magic = ARENA_MAGIC;
-#endif
-
-	return (false);
-}
-
-/* Create a new arena and insert it into the arenas array at index ind. */
-static arena_t *
-arenas_extend(unsigned ind)
-{
-	arena_t *ret;
-
-	/* Allocate enough space for trailing bins. */
-	ret = (arena_t *)base_alloc(sizeof(arena_t)
-	    + (sizeof(arena_bin_t) * (nbins - 1)));
-	if (ret != NULL && arena_new(ret) == false) {
-		arenas[ind] = ret;
-		return (ret);
-	}
-	/* Only reached if there is an OOM error. */
-
-	/*
-	 * OOM here is quite inconvenient to propagate, since dealing with it
-	 * would require a check for failure in the fast path.  Instead, punt
-	 * by using arenas[0].  In practice, this is an extremely unlikely
-	 * failure.
-	 */
-	_malloc_message(_getprogname(),
-	    ": (malloc) Error initializing arena\n", "", "");
-	if (opt_abort)
-		abort();
-
-	return (arenas[0]);
-}
-
-#ifdef MALLOC_MAG
-static mag_t *
-mag_create(arena_t *arena, size_t binind)
-{
-	mag_t *ret;
-
-	if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
-	    bin_maxclass) {
-		ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
-		    * (max_rounds - 1)), false);
-	} else {
-		ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
-		    1)));
-	}
-	if (ret == NULL)
-		return (NULL);
-	ret->binind = binind;
-	ret->nrounds = 0;
-
-	return (ret);
-}
-
-static void
-mag_destroy(mag_t *mag)
-{
-	arena_t *arena;
-	arena_chunk_t *chunk;
-	size_t pageind;
-	arena_chunk_map_t *mapelm;
-
-	chunk = CHUNK_ADDR2BASE(mag);
-	arena = chunk->arena;
-	pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> pagesize_2pow);
-	mapelm = &chunk->map[pageind];
-
-	assert(mag->nrounds == 0);
-	if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
-	    bin_maxclass) {
-		malloc_spin_lock(&arena->lock);
-		arena_dalloc_small(arena, chunk, mag, mapelm);
-		malloc_spin_unlock(&arena->lock);
-	} else
-		idalloc(mag);
-}
-
-static mag_rack_t *
-mag_rack_create(arena_t *arena)
-{
-
-	assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
-	    bin_maxclass);
-	return (arena_malloc_small(arena, sizeof(mag_rack_t) +
-	    (sizeof(bin_mags_t) * (nbins - 1)), true));
-}
-
-static void
-mag_rack_destroy(mag_rack_t *rack)
-{
-	arena_t *arena;
-	arena_chunk_t *chunk;
-	bin_mags_t *bin_mags;
-	size_t i, pageind;
-	arena_chunk_map_t *mapelm;
-
-	for (i = 0; i < nbins; i++) {
-		bin_mags = &rack->bin_mags[i];
-		if (bin_mags->curmag != NULL) {
-			assert(bin_mags->curmag->binind == i);
-			mag_unload(bin_mags->curmag);
-			mag_destroy(bin_mags->curmag);
-		}
-		if (bin_mags->sparemag != NULL) {
-			assert(bin_mags->sparemag->binind == i);
-			mag_unload(bin_mags->sparemag);
-			mag_destroy(bin_mags->sparemag);
-		}
-	}
-
-	chunk = CHUNK_ADDR2BASE(rack);
-	arena = chunk->arena;
-	pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> pagesize_2pow);
-	mapelm = &chunk->map[pageind];
-
-	malloc_spin_lock(&arena->lock);
-	arena_dalloc_small(arena, chunk, rack, mapelm);
-	malloc_spin_unlock(&arena->lock);
-}
-#endif
-
-/*
- * End arena.
- */
-/******************************************************************************/
-/*
- * Begin general internal functions.
- */
-
-static void *
-huge_malloc(size_t size, bool zero)
-{
-	void *ret;
-	size_t csize;
-	extent_node_t *node;
-
-	/* Allocate one or more contiguous chunks for this request. */
-
-	csize = CHUNK_CEILING(size);
-	if (csize == 0) {
-		/* size is large enough to cause size_t wrap-around. */
-		return (NULL);
-	}
-
-	/* Allocate an extent node with which to track the chunk. */
-	node = base_node_alloc();
-	if (node == NULL)
-		return (NULL);
-
-	ret = chunk_alloc(csize, zero);
-	if (ret == NULL) {
-		base_node_dealloc(node);
-		return (NULL);
-	}
-
-	/* Insert node into huge. */
-	node->addr = ret;
-	node->size = csize;
-
-	malloc_mutex_lock(&huge_mtx);
-	extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
-	huge_nmalloc++;
-	huge_allocated += csize;
-#endif
-	malloc_mutex_unlock(&huge_mtx);
-
-	if (zero == false) {
-		if (opt_junk)
-			memset(ret, 0xa5, csize);
-		else if (opt_zero)
-			memset(ret, 0, csize);
-	}
-
-	return (ret);
-}
-
-/* Only handles large allocations that require more than chunk alignment. */
-static void *
-huge_palloc(size_t alignment, size_t size)
-{
-	void *ret;
-	size_t alloc_size, chunk_size, offset;
-	extent_node_t *node;
-
-	/*
-	 * This allocation requires alignment that is even larger than chunk
-	 * alignment.  This means that huge_malloc() isn't good enough.
-	 *
-	 * Allocate almost twice as many chunks as are demanded by the size or
-	 * alignment, in order to assure the alignment can be achieved, then
-	 * unmap leading and trailing chunks.
-	 */
-	assert(alignment >= chunksize);
-
-	chunk_size = CHUNK_CEILING(size);
-
-	if (size >= alignment)
-		alloc_size = chunk_size + alignment - chunksize;
-	else
-		alloc_size = (alignment << 1) - chunksize;
-
-	/* Allocate an extent node with which to track the chunk. */
-	node = base_node_alloc();
-	if (node == NULL)
-		return (NULL);
-
-	ret = chunk_alloc(alloc_size, false);
-	if (ret == NULL) {
-		base_node_dealloc(node);
-		return (NULL);
-	}
-
-	offset = (uintptr_t)ret & (alignment - 1);
-	assert((offset & chunksize_mask) == 0);
-	assert(offset < alloc_size);
-	if (offset == 0) {
-		/* Trim trailing space. */
-		chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
-		    - chunk_size);
-	} else {
-		size_t trailsize;
-
-		/* Trim leading space. */
-		chunk_dealloc(ret, alignment - offset);
-
-		ret = (void *)((uintptr_t)ret + (alignment - offset));
-
-		trailsize = alloc_size - (alignment - offset) - chunk_size;
-		if (trailsize != 0) {
-		    /* Trim trailing space. */
-		    assert(trailsize < alloc_size);
-		    chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
-			trailsize);
-		}
-	}
-
-	/* Insert node into huge. */
-	node->addr = ret;
-	node->size = chunk_size;
-
-	malloc_mutex_lock(&huge_mtx);
-	extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
-	huge_nmalloc++;
-	huge_allocated += chunk_size;
-#endif
-	malloc_mutex_unlock(&huge_mtx);
-
-	if (opt_junk)
-		memset(ret, 0xa5, chunk_size);
-	else if (opt_zero)
-		memset(ret, 0, chunk_size);
-
-	return (ret);
-}
-
-static void *
-huge_ralloc(void *ptr, size_t size, size_t oldsize)
-{
-	void *ret;
-	size_t copysize;
-
-	/* Avoid moving the allocation if the size class would not change. */
-	if (oldsize > arena_maxclass &&
-	    CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
-		if (opt_junk && size < oldsize) {
-			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
-			    - size);
-		} else if (opt_zero && size > oldsize) {
-			memset((void *)((uintptr_t)ptr + oldsize), 0, size
-			    - oldsize);
-		}
-		return (ptr);
-	}
-
-	/*
-	 * If we get here, then size and oldsize are different enough that we
-	 * need to use a different size class.  In that case, fall back to
-	 * allocating new space and copying.
-	 */
-	ret = huge_malloc(size, false);
-	if (ret == NULL)
-		return (NULL);
-
-	copysize = (size < oldsize) ? size : oldsize;
-	memcpy(ret, ptr, copysize);
-	idalloc(ptr);
-	return (ret);
-}
-
-static void
-huge_dalloc(void *ptr)
-{
-	extent_node_t *node, key;
-
-	malloc_mutex_lock(&huge_mtx);
-
-	/* Extract from tree of huge allocations. */
-	key.addr = ptr;
-	node = extent_tree_ad_search(&huge, &key);
-	assert(node != NULL);
-	assert(node->addr == ptr);
-	extent_tree_ad_remove(&huge, node);
-
-#ifdef MALLOC_STATS
-	huge_ndalloc++;
-	huge_allocated -= node->size;
-#endif
-
-	malloc_mutex_unlock(&huge_mtx);
-
-	/* Unmap chunk. */
-#ifdef MALLOC_DSS
-	if (opt_dss && opt_junk)
-		memset(node->addr, 0x5a, node->size);
-#endif
-	chunk_dealloc(node->addr, node->size);
-
-	base_node_dealloc(node);
-}
-
-static void
-malloc_print_stats(void)
-{
-
-	if (opt_print_stats) {
-		char s[UMAX2S_BUFSIZE];
-		_malloc_message("___ Begin malloc statistics ___\n", "", "",
-		    "");
-		_malloc_message("Assertions ",
-#ifdef NDEBUG
-		    "disabled",
-#else
-		    "enabled",
-#endif
-		    "\n", "");
-		_malloc_message("Boolean MALLOC_OPTIONS: ",
-		    opt_abort ? "A" : "a", "", "");
-#ifdef MALLOC_DSS
-		_malloc_message(opt_dss ? "D" : "d", "", "", "");
-#endif
-#ifdef MALLOC_MAG
-		_malloc_message(opt_mag ? "G" : "g", "", "", "");
-#endif
-		_malloc_message(opt_junk ? "J" : "j", "", "", "");
-#ifdef MALLOC_DSS
-		_malloc_message(opt_mmap ? "M" : "m", "", "", "");
-#endif
-		_malloc_message(opt_utrace ? "PU" : "Pu",
-		    opt_sysv ? "V" : "v",
-		    opt_xmalloc ? "X" : "x",
-		    opt_zero ? "Z\n" : "z\n");
-
-		_malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
-		_malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
-#ifdef MALLOC_BALANCE
-		_malloc_message("Arena balance threshold: ",
-		    umax2s(opt_balance_threshold, s), "\n", "");
-#endif
-		_malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
-		    "\n", "");
-		_malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
-		_malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
-		    s), "\n", "");
-#ifdef MALLOC_TINY
-		_malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
-		    TINY_MIN_2POW), s), "..", "");
-		_malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
-#endif
-		_malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
-		    s), "..", "");
-		_malloc_message(umax2s(qspace_max, s), "]\n", "", "");
-		_malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
-		    s), "..", "");
-		_malloc_message(umax2s(cspace_max, s), "]\n", "", "");
-		_malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
-		    s), "..", "");
-		_malloc_message(umax2s(sspace_max, s), "]\n", "", "");
-#ifdef MALLOC_MAG
-		_malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
-		    "\n", "");
-#endif
-		_malloc_message("Max dirty pages per arena: ",
-		    umax2s(opt_dirty_max, s), "\n", "");
-
-		_malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
-		_malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
-
-#ifdef MALLOC_STATS
-		{
-			size_t allocated, mapped;
-#ifdef MALLOC_BALANCE
-			uint64_t nbalance = 0;
-#endif
-			unsigned i;
-			arena_t *arena;
-
-			/* Calculate and print allocated/mapped stats. */
-
-			/* arenas. */
-			for (i = 0, allocated = 0; i < narenas; i++) {
-				if (arenas[i] != NULL) {
-					malloc_spin_lock(&arenas[i]->lock);
-					allocated +=
-					    arenas[i]->stats.allocated_small;
-					allocated +=
-					    arenas[i]->stats.allocated_large;
-#ifdef MALLOC_BALANCE
-					nbalance += arenas[i]->stats.nbalance;
-#endif
-					malloc_spin_unlock(&arenas[i]->lock);
-				}
-			}
-
-			/* huge/base. */
-			malloc_mutex_lock(&huge_mtx);
-			allocated += huge_allocated;
-			mapped = stats_chunks.curchunks * chunksize;
-			malloc_mutex_unlock(&huge_mtx);
-
-			malloc_mutex_lock(&base_mtx);
-			mapped += base_mapped;
-			malloc_mutex_unlock(&base_mtx);
-
-			malloc_printf("Allocated: %zu, mapped: %zu\n",
-			    allocated, mapped);
-
-#ifdef MALLOC_BALANCE
-			malloc_printf("Arena balance reassignments: %llu\n",
-			    nbalance);
-#endif
-
-			/* Print chunk stats. */
-			{
-				chunk_stats_t chunks_stats;
-
-				malloc_mutex_lock(&huge_mtx);
-				chunks_stats = stats_chunks;
-				malloc_mutex_unlock(&huge_mtx);
-
-				malloc_printf("chunks: nchunks   "
-				    "highchunks    curchunks\n");
-				malloc_printf("  %13llu%13lu%13lu\n",
-				    chunks_stats.nchunks,
-				    chunks_stats.highchunks,
-				    chunks_stats.curchunks);
-			}
-
-			/* Print chunk stats. */
-			malloc_printf(
-			    "huge: nmalloc      ndalloc    allocated\n");
-			malloc_printf(" %12llu %12llu %12zu\n",
-			    huge_nmalloc, huge_ndalloc, huge_allocated);
-
-			/* Print stats for each arena. */
-			for (i = 0; i < narenas; i++) {
-				arena = arenas[i];
-				if (arena != NULL) {
-					malloc_printf(
-					    "\narenas[%u]:\n", i);
-					malloc_spin_lock(&arena->lock);
-					stats_print(arena);
-					malloc_spin_unlock(&arena->lock);
-				}
-			}
-		}
-#endif /* #ifdef MALLOC_STATS */
-		_malloc_message("--- End malloc statistics ---\n", "", "", "");
-	}
-}
-
-#ifdef MALLOC_DEBUG
-static void
-size2bin_validate(void)
-{
-	size_t i, size, binind;
-
-	assert(size2bin[0] == 0xffU);
-	i = 1;
-#  ifdef MALLOC_TINY
-	/* Tiny. */
-	for (; i < (1U << TINY_MIN_2POW); i++) {
-		size = pow2_ceil(1U << TINY_MIN_2POW);
-		binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
-		assert(size2bin[i] == binind);
-	}
-	for (; i < qspace_min; i++) {
-		size = pow2_ceil(i);
-		binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
-		assert(size2bin[i] == binind);
-	}
-#  endif
-	/* Quantum-spaced. */
-	for (; i <= qspace_max; i++) {
-		size = QUANTUM_CEILING(i);
-		binind = ntbins + (size >> QUANTUM_2POW) - 1;
-		assert(size2bin[i] == binind);
-	}
-	/* Cacheline-spaced. */
-	for (; i <= cspace_max; i++) {
-		size = CACHELINE_CEILING(i);
-		binind = ntbins + nqbins + ((size - cspace_min) >>
-		    CACHELINE_2POW);
-		assert(size2bin[i] == binind);
-	}
-	/* Sub-page. */
-	for (; i <= sspace_max; i++) {
-		size = SUBPAGE_CEILING(i);
-		binind = ntbins + nqbins + ncbins + ((size - sspace_min)
-		    >> SUBPAGE_2POW);
-		assert(size2bin[i] == binind);
-	}
-}
-#endif
-
-static bool
-size2bin_init(void)
-{
-
-	if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
-	    || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
-		return (size2bin_init_hard());
-
-	size2bin = const_size2bin;
-#ifdef MALLOC_DEBUG
-	assert(sizeof(const_size2bin) == bin_maxclass + 1);
-	size2bin_validate();
-#endif
-	return (false);
-}
-
-static bool
-size2bin_init_hard(void)
-{
-	size_t i, size, binind;
-	uint8_t *custom_size2bin;
-
-	assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
-	    || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
-
-	custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
-	if (custom_size2bin == NULL)
-		return (true);
-
-	custom_size2bin[0] = 0xffU;
-	i = 1;
-#ifdef MALLOC_TINY
-	/* Tiny. */
-	for (; i < (1U << TINY_MIN_2POW); i++) {
-		size = pow2_ceil(1U << TINY_MIN_2POW);
-		binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
-		custom_size2bin[i] = binind;
-	}
-	for (; i < qspace_min; i++) {
-		size = pow2_ceil(i);
-		binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
-		custom_size2bin[i] = binind;
-	}
-#endif
-	/* Quantum-spaced. */
-	for (; i <= qspace_max; i++) {
-		size = QUANTUM_CEILING(i);
-		binind = ntbins + (size >> QUANTUM_2POW) - 1;
-		custom_size2bin[i] = binind;
-	}
-	/* Cacheline-spaced. */
-	for (; i <= cspace_max; i++) {
-		size = CACHELINE_CEILING(i);
-		binind = ntbins + nqbins + ((size - cspace_min) >>
-		    CACHELINE_2POW);
-		custom_size2bin[i] = binind;
-	}
-	/* Sub-page. */
-	for (; i <= sspace_max; i++) {
-		size = SUBPAGE_CEILING(i);
-		binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
-		    SUBPAGE_2POW);
-		custom_size2bin[i] = binind;
-	}
-
-	size2bin = custom_size2bin;
-#ifdef MALLOC_DEBUG
-	size2bin_validate();
-#endif
-	return (false);
-}
-
-static unsigned
-malloc_ncpus(void)
-{
-	unsigned ret;
-	int fd, nread, column;
-	char buf[1];
-	static const char matchstr[] = "processor\t:";
-
-	/*
-	 * sysconf(3) would be the preferred method for determining the number
-	 * of CPUs, but it uses malloc internally, which causes untennable
-	 * recursion during malloc initialization.
-	 */
-	fd = open("/proc/cpuinfo", O_RDONLY);
-	if (fd == -1)
-		return (1); /* Error. */
-	/*
-	 * Count the number of occurrences of matchstr at the beginnings of
-	 * lines.  This treats hyperthreaded CPUs as multiple processors.
-	 */
-	column = 0;
-	ret = 0;
-	while (true) {
-		nread = read(fd, &buf, sizeof(buf));
-		if (nread <= 0)
-			break; /* EOF or error. */
-
-		if (buf[0] == '\n')
-			column = 0;
-		else if (column != -1) {
-			if (buf[0] == matchstr[column]) {
-				column++;
-				if (column == sizeof(matchstr) - 1) {
-					column = -1;
-					ret++;
-				}
-			} else
-				column = -1;
-		}
-	}
-	if (ret == 0)
-		ret = 1; /* Something went wrong in the parser. */
-	close(fd);
-
-	return (ret);
-}
-/*
- * FreeBSD's pthreads implementation calls malloc(3), so the malloc
- * implementation has to take pains to avoid infinite recursion during
- * initialization.
- */
-static inline bool
-malloc_init(void)
-{
-
-	if (malloc_initialized == false)
-		return (malloc_init_hard());
-
-	return (false);
-}
-
-static bool
-malloc_init_hard(void)
-{
-	unsigned i;
-	int linklen;
-	char buf[PATH_MAX + 1];
-	const char *opts;
-
-	malloc_mutex_lock(&init_lock);
-	if (malloc_initialized) {
-		/*
-		 * Another thread initialized the allocator before this one
-		 * acquired init_lock.
-		 */
-		malloc_mutex_unlock(&init_lock);
-		return (false);
-	}
-
-	/* Get number of CPUs. */
-	ncpus = malloc_ncpus();
-
-	/* Get page size. */
-	{
-		long result;
-
-		result = sysconf(_SC_PAGESIZE);
-		assert(result != -1);
-		pagesize = (unsigned)result;
-
-		/*
-		 * We assume that pagesize is a power of 2 when calculating
-		 * pagesize_mask and pagesize_2pow.
-		 */
-		assert(((result - 1) & result) == 0);
-		pagesize_mask = result - 1;
-		pagesize_2pow = ffs((int)result) - 1;
-	}
-
-	for (i = 0; i < 3; i++) {
-		unsigned j;
-
-		/* Get runtime configuration. */
-		switch (i) {
-		case 0:
-			if ((linklen = readlink("/etc/malloc.conf", buf,
-						sizeof(buf) - 1)) != -1) {
-				/*
-				 * Use the contents of the "/etc/malloc.conf"
-				 * symbolic link's name.
-				 */
-				buf[linklen] = '\0';
-				opts = buf;
-			} else {
-				/* No configuration specified. */
-				buf[0] = '\0';
-				opts = buf;
-			}
-			break;
-		case 1:
-			if (issetugid() == 0 && (opts =
-			    getenv("MALLOC_OPTIONS")) != NULL) {
-				/*
-				 * Do nothing; opts is already initialized to
-				 * the value of the MALLOC_OPTIONS environment
-				 * variable.
-				 */
-			} else {
-				/* No configuration specified. */
-				buf[0] = '\0';
-				opts = buf;
-			}
-			break;
-		case 2:
-			if (_malloc_options != NULL) {
-				/*
-				 * Use options that were compiled into the
-				 * program.
-				 */
-				opts = _malloc_options;
-			} else {
-				/* No configuration specified. */
-				buf[0] = '\0';
-				opts = buf;
-			}
-			break;
-		default:
-			/* NOTREACHED */
-			assert(false);
-		}
-
-		for (j = 0; opts[j] != '\0'; j++) {
-			unsigned k, nreps;
-			bool nseen;
-
-			/* Parse repetition count, if any. */
-			for (nreps = 0, nseen = false;; j++, nseen = true) {
-				switch (opts[j]) {
-					case '0': case '1': case '2': case '3':
-					case '4': case '5': case '6': case '7':
-					case '8': case '9':
-						nreps *= 10;
-						nreps += opts[j] - '0';
-						break;
-					default:
-						goto MALLOC_OUT;
-				}
-			}
-MALLOC_OUT:
-			if (nseen == false)
-				nreps = 1;
-
-			for (k = 0; k < nreps; k++) {
-				switch (opts[j]) {
-				case 'a':
-					opt_abort = false;
-					break;
-				case 'A':
-					opt_abort = true;
-					break;
-				case 'b':
-#ifdef MALLOC_BALANCE
-					opt_balance_threshold >>= 1;
-#endif
-					break;
-				case 'B':
-#ifdef MALLOC_BALANCE
-					if (opt_balance_threshold == 0)
-						opt_balance_threshold = 1;
-					else if ((opt_balance_threshold << 1)
-					    > opt_balance_threshold)
-						opt_balance_threshold <<= 1;
-#endif
-					break;
-				case 'c':
-					if (opt_cspace_max_2pow - 1 >
-					    opt_qspace_max_2pow &&
-					    opt_cspace_max_2pow >
-					    CACHELINE_2POW)
-						opt_cspace_max_2pow--;
-					break;
-				case 'C':
-					if (opt_cspace_max_2pow < pagesize_2pow
-					    - 1)
-						opt_cspace_max_2pow++;
-					break;
-				case 'd':
-#ifdef MALLOC_DSS
-					opt_dss = false;
-#endif
-					break;
-				case 'D':
-#ifdef MALLOC_DSS
-					opt_dss = true;
-#endif
-					break;
-				case 'f':
-					opt_dirty_max >>= 1;
-					break;
-				case 'F':
-					if (opt_dirty_max == 0)
-						opt_dirty_max = 1;
-					else if ((opt_dirty_max << 1) != 0)
-						opt_dirty_max <<= 1;
-					break;
-#ifdef MALLOC_MAG
-				case 'g':
-					opt_mag = false;
-					break;
-				case 'G':
-					opt_mag = true;
-					break;
-#endif
-				case 'j':
-					opt_junk = false;
-					break;
-				case 'J':
-					opt_junk = true;
-					break;
-				case 'k':
-					/*
-					 * Chunks always require at least one
-					 * header page, so chunks can never be
-					 * smaller than two pages.
-					 */
-					if (opt_chunk_2pow > pagesize_2pow + 1)
-						opt_chunk_2pow--;
-					break;
-				case 'K':
-					if (opt_chunk_2pow + 1 <
-					    (sizeof(size_t) << 3))
-						opt_chunk_2pow++;
-					break;
-				case 'm':
-#ifdef MALLOC_DSS
-					opt_mmap = false;
-#endif
-					break;
-				case 'M':
-#ifdef MALLOC_DSS
-					opt_mmap = true;
-#endif
-					break;
-				case 'n':
-					opt_narenas_lshift--;
-					break;
-				case 'N':
-					opt_narenas_lshift++;
-					break;
-				case 'p':
-					opt_print_stats = false;
-					break;
-				case 'P':
-					opt_print_stats = true;
-					break;
-				case 'q':
-					if (opt_qspace_max_2pow > QUANTUM_2POW)
-						opt_qspace_max_2pow--;
-					break;
-				case 'Q':
-					if (opt_qspace_max_2pow + 1 <
-					    opt_cspace_max_2pow)
-						opt_qspace_max_2pow++;
-					break;
-#ifdef MALLOC_MAG
-				case 'R':
-					if (opt_mag_size_2pow + 1 < (8U <<
-					    SIZEOF_PTR_2POW))
-						opt_mag_size_2pow++;
-					break;
-				case 'r':
-					/*
-					 * Make sure there's always at least
-					 * one round per magazine.
-					 */
-					if ((1U << (opt_mag_size_2pow-1)) >=
-					    sizeof(mag_t))
-						opt_mag_size_2pow--;
-					break;
-#endif
-				case 'u':
-					opt_utrace = false;
-					break;
-				case 'U':
-					opt_utrace = true;
-					break;
-				case 'v':
-					opt_sysv = false;
-					break;
-				case 'V':
-					opt_sysv = true;
-					break;
-				case 'x':
-					opt_xmalloc = false;
-					break;
-				case 'X':
-					opt_xmalloc = true;
-					break;
-				case 'z':
-					opt_zero = false;
-					break;
-				case 'Z':
-					opt_zero = true;
-					break;
-				default: {
-					char cbuf[2];
-
-					cbuf[0] = opts[j];
-					cbuf[1] = '\0';
-					_malloc_message(_getprogname(),
-					    ": (malloc) Unsupported character "
-					    "in malloc options: '", cbuf,
-					    "'\n");
-				}
-				}
-			}
-		}
-	}
-
-#ifdef MALLOC_DSS
-	/* Make sure that there is some method for acquiring memory. */
-	if (opt_dss == false && opt_mmap == false)
-		opt_mmap = true;
-#endif
-
-	/* Take care to call atexit() only once. */
-	if (opt_print_stats) {
-		/* Print statistics at exit. */
-		atexit(malloc_print_stats);
-	}
-
-	/* Register fork handlers. */
-	pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
-
-#ifdef MALLOC_MAG
-	/*
-	 * Calculate the actual number of rounds per magazine, taking into
-	 * account header overhead.
-	 */
-	max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
-	    (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
-#endif
-
-	/* Set variables according to the value of opt_[qc]space_max_2pow. */
-	qspace_max = (1U << opt_qspace_max_2pow);
-	cspace_min = CACHELINE_CEILING(qspace_max);
-	if (cspace_min == qspace_max)
-		cspace_min += CACHELINE;
-	cspace_max = (1U << opt_cspace_max_2pow);
-	sspace_min = SUBPAGE_CEILING(cspace_max);
-	if (sspace_min == cspace_max)
-		sspace_min += SUBPAGE;
-	assert(sspace_min < pagesize);
-	sspace_max = pagesize - SUBPAGE;
-
-#ifdef MALLOC_TINY
-	assert(QUANTUM_2POW >= TINY_MIN_2POW);
-#endif
-	assert(ntbins <= QUANTUM_2POW);
-	nqbins = qspace_max >> QUANTUM_2POW;
-	ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
-	nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
-	nbins = ntbins + nqbins + ncbins + nsbins;
-
-	if (size2bin_init()) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-
-	/* Set variables according to the value of opt_chunk_2pow. */
-	chunksize = (1LU << opt_chunk_2pow);
-	chunksize_mask = chunksize - 1;
-	chunk_npages = (chunksize >> pagesize_2pow);
-	{
-		size_t header_size;
-
-		/*
-		 * Compute the header size such that it is large enough to
-		 * contain the page map.
-		 */
-		header_size = sizeof(arena_chunk_t) +
-		    (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
-		arena_chunk_header_npages = (header_size >> pagesize_2pow) +
-		    ((header_size & pagesize_mask) != 0);
-	}
-	arena_maxclass = chunksize - (arena_chunk_header_npages <<
-	    pagesize_2pow);
-
-	UTRACE(0, 0, 0);
-
-#ifdef MALLOC_STATS
-	memset(&stats_chunks, 0, sizeof(chunk_stats_t));
-#endif
-
-	/* Various sanity checks that regard configuration. */
-	assert(chunksize >= pagesize);
-
-	/* Initialize chunks data. */
-	if (malloc_mutex_init(&huge_mtx)) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-	extent_tree_ad_new(&huge);
-#ifdef MALLOC_DSS
-	if (malloc_mutex_init(&dss_mtx)) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-	dss_base = sbrk(0);
-	dss_prev = dss_base;
-	dss_max = dss_base;
-	extent_tree_szad_new(&dss_chunks_szad);
-	extent_tree_ad_new(&dss_chunks_ad);
-#endif
-#ifdef MALLOC_STATS
-	huge_nmalloc = 0;
-	huge_ndalloc = 0;
-	huge_allocated = 0;
-#endif
-
-	/* Initialize base allocation data structures. */
-#ifdef MALLOC_STATS
-	base_mapped = 0;
-#endif
-#ifdef MALLOC_DSS
-	/*
-	 * Allocate a base chunk here, since it doesn't actually have to be
-	 * chunk-aligned.  Doing this before allocating any other chunks allows
-	 * the use of space that would otherwise be wasted.
-	 */
-	if (opt_dss)
-		base_pages_alloc(0);
-#endif
-	base_nodes = NULL;
-	if (malloc_mutex_init(&base_mtx)) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-
-	if (ncpus > 1) {
-		/*
-		 * For SMP systems, create twice as many arenas as there are
-		 * CPUs by default.
-		 */
-		opt_narenas_lshift++;
-	}
-
-	/* Determine how many arenas to use. */
-	narenas = ncpus;
-	if (opt_narenas_lshift > 0) {
-		if ((narenas << opt_narenas_lshift) > narenas)
-			narenas <<= opt_narenas_lshift;
-		/*
-		 * Make sure not to exceed the limits of what base_alloc() can
-		 * handle.
-		 */
-		if (narenas * sizeof(arena_t *) > chunksize)
-			narenas = chunksize / sizeof(arena_t *);
-	} else if (opt_narenas_lshift < 0) {
-		if ((narenas >> -opt_narenas_lshift) < narenas)
-			narenas >>= -opt_narenas_lshift;
-		/* Make sure there is at least one arena. */
-		if (narenas == 0)
-			narenas = 1;
-	}
-#ifdef MALLOC_BALANCE
-	assert(narenas != 0);
-	for (narenas_2pow = 0;
-	     (narenas >> (narenas_2pow + 1)) != 0;
-	     narenas_2pow++);
-#endif
-
-#ifdef NO_TLS
-	if (narenas > 1) {
-		static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
-		    23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
-		    89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
-		    151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
-		    223, 227, 229, 233, 239, 241, 251, 257, 263};
-		unsigned nprimes, parenas;
-
-		/*
-		 * Pick a prime number of hash arenas that is more than narenas
-		 * so that direct hashing of pthread_self() pointers tends to
-		 * spread allocations evenly among the arenas.
-		 */
-		assert((narenas & 1) == 0); /* narenas must be even. */
-		nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
-		parenas = primes[nprimes - 1]; /* In case not enough primes. */
-		for (i = 1; i < nprimes; i++) {
-			if (primes[i] > narenas) {
-				parenas = primes[i];
-				break;
-			}
-		}
-		narenas = parenas;
-	}
-#endif
-
-#ifndef NO_TLS
-#  ifndef MALLOC_BALANCE
-	next_arena = 0;
-#  endif
-#endif
-
-	/* Allocate and initialize arenas. */
-	arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
-	if (arenas == NULL) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-	/*
-	 * Zero the array.  In practice, this should always be pre-zeroed,
-	 * since it was just mmap()ed, but let's be sure.
-	 */
-	memset(arenas, 0, sizeof(arena_t *) * narenas);
-
-	/*
-	 * Initialize one arena here.  The rest are lazily created in
-	 * choose_arena_hard().
-	 */
-	arenas_extend(0);
-	if (arenas[0] == NULL) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-#ifndef NO_TLS
-	/*
-	 * Assign the initial arena to the initial thread, in order to avoid
-	 * spurious creation of an extra arena if the application switches to
-	 * threaded mode.
-	 */
-	arenas_map = arenas[0];
-#endif
-	/*
-	 * Seed here for the initial thread, since choose_arena_hard() is only
-	 * called for other threads.  The seed value doesn't really matter.
-	 */
-#ifdef MALLOC_BALANCE
-	SPRN(balance, 42);
-#endif
-
-	malloc_spin_init(&arenas_lock);
-
-	malloc_initialized = true;
-	malloc_mutex_unlock(&init_lock);
-	return (false);
-}
-
-/*
- * End general internal functions.
- */
-/******************************************************************************/
-/*
- * Begin malloc(3)-compatible functions.
- */
-
-void *
-malloc(size_t size)
-{
-	void *ret;
-
-	if (malloc_init()) {
-		ret = NULL;
-		goto RETURN;
-	}
-
-	if (size == 0) {
-		if (opt_sysv == false)
-			size = 1;
-		else {
-			ret = NULL;
-			goto RETURN;
-		}
-	}
-
-	ret = imalloc(size);
-
-RETURN:
-	if (ret == NULL) {
-		if (opt_xmalloc) {
-			_malloc_message(_getprogname(),
-			    ": (malloc) Error in malloc(): out of memory\n", "",
-			    "");
-			abort();
-		}
-		errno = ENOMEM;
-	}
-
-	UTRACE(0, size, ret);
-	return (ret);
-}
-
-int
-posix_memalign(void **memptr, size_t alignment, size_t size)
-{
-	int ret;
-	void *result;
-
-	if (malloc_init())
-		result = NULL;
-	else {
-		/* Make sure that alignment is a large enough power of 2. */
-		if (((alignment - 1) & alignment) != 0
-		    || alignment < sizeof(void *)) {
-			if (opt_xmalloc) {
-				_malloc_message(_getprogname(),
-				    ": (malloc) Error in posix_memalign(): "
-				    "invalid alignment\n", "", "");
-				abort();
-			}
-			result = NULL;
-			ret = EINVAL;
-			goto RETURN;
-		}
-
-		result = ipalloc(alignment, size);
-	}
-
-	if (result == NULL) {
-		if (opt_xmalloc) {
-			_malloc_message(_getprogname(),
-			": (malloc) Error in posix_memalign(): out of memory\n",
-			"", "");
-			abort();
-		}
-		ret = ENOMEM;
-		goto RETURN;
-	}
-
-	*memptr = result;
-	ret = 0;
-
-RETURN:
-	UTRACE(0, size, result);
-	return (ret);
-}
-
-void *
-calloc(size_t num, size_t size)
-{
-	void *ret;
-	size_t num_size;
-
-	if (malloc_init()) {
-		num_size = 0;
-		ret = NULL;
-		goto RETURN;
-	}
-
-	num_size = num * size;
-	if (num_size == 0) {
-		if ((opt_sysv == false) && ((num == 0) || (size == 0)))
-			num_size = 1;
-		else {
-			ret = NULL;
-			goto RETURN;
-		}
-	/*
-	 * Try to avoid division here.  We know that it isn't possible to
-	 * overflow during multiplication if neither operand uses any of the
-	 * most significant half of the bits in a size_t.
-	 */
-	} else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
-	    && (num_size / size != num)) {
-		/* size_t overflow. */
-		ret = NULL;
-		goto RETURN;
-	}
-
-	ret = icalloc(num_size);
-
-RETURN:
-	if (ret == NULL) {
-		if (opt_xmalloc) {
-			_malloc_message(_getprogname(),
-			    ": (malloc) Error in calloc(): out of memory\n", "",
-			    "");
-			abort();
-		}
-		errno = ENOMEM;
-	}
-
-	UTRACE(0, num_size, ret);
-	return (ret);
-}
-
-void *
-realloc(void *ptr, size_t size)
-{
-	void *ret;
-
-	if (size == 0) {
-		if (opt_sysv == false)
-			size = 1;
-		else {
-			if (ptr != NULL)
-				idalloc(ptr);
-			ret = NULL;
-			goto RETURN;
-		}
-	}
-
-	if (ptr != NULL) {
-		assert(malloc_initialized);
-
-		ret = iralloc(ptr, size);
-
-		if (ret == NULL) {
-			if (opt_xmalloc) {
-				_malloc_message(_getprogname(),
-				    ": (malloc) Error in realloc(): out of "
-				    "memory\n", "", "");
-				abort();
-			}
-			errno = ENOMEM;
-		}
-	} else {
-		if (malloc_init())
-			ret = NULL;
-		else
-			ret = imalloc(size);
-
-		if (ret == NULL) {
-			if (opt_xmalloc) {
-				_malloc_message(_getprogname(),
-				    ": (malloc) Error in realloc(): out of "
-				    "memory\n", "", "");
-				abort();
-			}
-			errno = ENOMEM;
-		}
-	}
-
-RETURN:
-	UTRACE(ptr, size, ret);
-	return (ret);
-}
-
-void
-free(void *ptr)
-{
-
-	UTRACE(ptr, 0, 0);
-	if (ptr != NULL) {
-		assert(malloc_initialized);
-
-		idalloc(ptr);
-	}
-}
-
-/*
- * End malloc(3)-compatible functions.
- */
-/******************************************************************************/
-/*
- * Begin non-standard functions.
- */
-
-size_t
-malloc_usable_size(const void *ptr)
-{
-
-	assert(ptr != NULL);
-
-	return (isalloc(ptr));
-}
-
-/*
- * End non-standard functions.
- */
-/******************************************************************************/
-/*
- * Begin library-private functions.
- */
-
-/******************************************************************************/
-/*
- * Begin thread cache.
- */
-
-/*
- * We provide an unpublished interface in order to receive notifications from
- * the pthreads library whenever a thread exits.  This allows us to clean up
- * thread caches.
- */
-void
-_malloc_thread_cleanup(void)
-{
-
-#ifdef MALLOC_MAG
-	if (mag_rack != NULL) {
-		assert(mag_rack != (void *)-1);
-		mag_rack_destroy(mag_rack);
-#ifdef MALLOC_DEBUG
-		mag_rack = (void *)-1;
-#endif
-	}
-#endif
-}
-
-/*
- * The following functions are used by threading libraries for protection of
- * malloc during fork().  These functions are only called if the program is
- * running in threaded mode, so there is no need to check whether the program
- * is threaded here.
- */
-
-void
-_malloc_prefork(void)
-{
-	unsigned i;
-
-	/* Acquire all mutexes in a safe order. */
-
-	malloc_spin_lock(&arenas_lock);
-	for (i = 0; i < narenas; i++) {
-		if (arenas[i] != NULL)
-			malloc_spin_lock(&arenas[i]->lock);
-	}
-	malloc_spin_unlock(&arenas_lock);
-
-	malloc_mutex_lock(&base_mtx);
-
-	malloc_mutex_lock(&huge_mtx);
-
-#ifdef MALLOC_DSS
-	malloc_mutex_lock(&dss_mtx);
-#endif
-}
-
-void
-_malloc_postfork(void)
-{
-	unsigned i;
-
-	/* Release all mutexes, now that fork() has completed. */
-
-#ifdef MALLOC_DSS
-	malloc_mutex_unlock(&dss_mtx);
-#endif
-
-	malloc_mutex_unlock(&huge_mtx);
-
-	malloc_mutex_unlock(&base_mtx);
-
-	malloc_spin_lock(&arenas_lock);
-	for (i = 0; i < narenas; i++) {
-		if (arenas[i] != NULL)
-			malloc_spin_unlock(&arenas[i]->lock);
-	}
-	malloc_spin_unlock(&arenas_lock);
-}
-
-/*
- * End library-private functions.
- */
-/******************************************************************************/
diff --git a/lib/libjemalloc/malloc.3 b/lib/libjemalloc/malloc.3
deleted file mode 100644
index 67a52fb..0000000
--- a/lib/libjemalloc/malloc.3
+++ /dev/null
@@ -1,584 +0,0 @@
-.\" Copyright (c) 1980, 1991, 1993
-.\"	The Regents of the University of California.  All rights reserved.
-.\"
-.\" This code is derived from software contributed to Berkeley by
-.\" the American National Standards Committee X3, on Information
-.\" Processing Systems.
-.\"
-.\" Redistribution and use in source and binary forms, with or without
-.\" modification, are permitted provided that the following conditions
-.\" are met:
-.\" 1. Redistributions of source code must retain the above copyright
-.\"    notice, this list of conditions and the following disclaimer.
-.\" 2. Redistributions in binary form must reproduce the above copyright
-.\"    notice, this list of conditions and the following disclaimer in the
-.\"    documentation and/or other materials provided with the distribution.
-.\" 3. Neither the name of the University nor the names of its contributors
-.\"    may be used to endorse or promote products derived from this software
-.\"    without specific prior written permission.
-.\"
-.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
-.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
-.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
-.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
-.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
-.\" SUCH DAMAGE.
-.\"
-.\"     @(#)malloc.3	8.1 (Berkeley) 6/4/93
-.\" $FreeBSD: head/lib/libc/stdlib/malloc.3 182225 2008-08-27 02:00:53Z jasone $
-.\"
-.Dd August 26, 2008
-.Dt MALLOC 3
-.Os
-.Sh NAME
-.Nm malloc , calloc , realloc , free , reallocf , malloc_usable_size
-.Nd general purpose memory allocation functions
-.Sh LIBRARY
-.Lb libc
-.Sh SYNOPSIS
-.In stdlib.h
-.Ft void *
-.Fn malloc "size_t size"
-.Ft void *
-.Fn calloc "size_t number" "size_t size"
-.Ft void *
-.Fn realloc "void *ptr" "size_t size"
-.Ft void *
-.Fn reallocf "void *ptr" "size_t size"
-.Ft void
-.Fn free "void *ptr"
-.Ft const char *
-.Va _malloc_options ;
-.Ft void
-.Fo \*(lp*_malloc_message\*(rp
-.Fa "const char *p1" "const char *p2" "const char *p3" "const char *p4"
-.Fc
-.In malloc_np.h
-.Ft size_t
-.Fn malloc_usable_size "const void *ptr"
-.Sh DESCRIPTION
-The
-.Fn malloc
-function allocates
-.Fa size
-bytes of uninitialized memory.
-The allocated space is suitably aligned (after possible pointer coercion)
-for storage of any type of object.
-.Pp
-The
-.Fn calloc
-function allocates space for
-.Fa number
-objects,
-each
-.Fa size
-bytes in length.
-The result is identical to calling
-.Fn malloc
-with an argument of
-.Dq "number * size" ,
-with the exception that the allocated memory is explicitly initialized
-to zero bytes.
-.Pp
-The
-.Fn realloc
-function changes the size of the previously allocated memory referenced by
-.Fa ptr
-to
-.Fa size
-bytes.
-The contents of the memory are unchanged up to the lesser of the new and
-old sizes.
-If the new size is larger,
-the contents of the newly allocated portion of the memory are undefined.
-Upon success, the memory referenced by
-.Fa ptr
-is freed and a pointer to the newly allocated memory is returned.
-Note that
-.Fn realloc
-and
-.Fn reallocf
-may move the memory allocation, resulting in a different return value than
-.Fa ptr .
-If
-.Fa ptr
-is
-.Dv NULL ,
-the
-.Fn realloc
-function behaves identically to
-.Fn malloc
-for the specified size.
-.Pp
-The
-.Fn reallocf
-function is identical to the
-.Fn realloc
-function, except that it
-will free the passed pointer when the requested memory cannot be allocated.
-This is a
-.Fx
-specific API designed to ease the problems with traditional coding styles
-for realloc causing memory leaks in libraries.
-.Pp
-The
-.Fn free
-function causes the allocated memory referenced by
-.Fa ptr
-to be made available for future allocations.
-If
-.Fa ptr
-is
-.Dv NULL ,
-no action occurs.
-.Pp
-The
-.Fn malloc_usable_size
-function returns the usable size of the allocation pointed to by
-.Fa ptr .
-The return value may be larger than the size that was requested during
-allocation.
-The
-.Fn malloc_usable_size
-function is not a mechanism for in-place
-.Fn realloc ;
-rather it is provided solely as a tool for introspection purposes.
-Any discrepancy between the requested allocation size and the size reported by
-.Fn malloc_usable_size
-should not be depended on, since such behavior is entirely
-implementation-dependent.
-.Sh TUNING
-Once, when the first call is made to one of these memory allocation
-routines, various flags will be set or reset, which affects the
-workings of this allocator implementation.
-.Pp
-The
-.Dq name
-of the file referenced by the symbolic link named
-.Pa /etc/malloc.conf ,
-the value of the environment variable
-.Ev MALLOC_OPTIONS ,
-and the string pointed to by the global variable
-.Va _malloc_options
-will be interpreted, in that order, from left to right as flags.
-.Pp
-Each flag is a single letter, optionally prefixed by a non-negative base 10
-integer repetition count.
-For example,
-.Dq 3N
-is equivalent to
-.Dq NNN .
-Some flags control parameter magnitudes, where uppercase increases the
-magnitude, and lowercase decreases the magnitude.
-Other flags control boolean parameters, where uppercase indicates that a
-behavior is set, or on, and lowercase means that a behavior is not set, or off.
-.Bl -tag -width indent
-.It A
-All warnings (except for the warning about unknown
-flags being set) become fatal.
-The process will call
-.Xr abort 3
-in these cases.
-.It B
-Double/halve the per-arena lock contention threshold at which a thread is
-randomly re-assigned to an arena.
-This dynamic load balancing tends to push threads away from highly contended
-arenas, which avoids worst case contention scenarios in which threads
-disproportionately utilize arenas.
-However, due to the highly dynamic load that applications may place on the
-allocator, it is impossible for the allocator to know in advance how sensitive
-it should be to contention over arenas.
-Therefore, some applications may benefit from increasing or decreasing this
-threshold parameter.
-This option is not available for some configurations (non-PIC).
-.It C
-Double/halve the size of the maximum size class that is a multiple of the
-cacheline size (64).
-Above this size, subpage spacing (256 bytes) is used for size classes.
-The default value is 512 bytes.
-.It D
-Use
-.Xr sbrk 2
-to acquire memory in the data storage segment (DSS).
-This option is enabled by default.
-See the
-.Dq M
-option for related information and interactions.
-.It F
-Double/halve the per-arena maximum number of dirty unused pages that are
-allowed to accumulate before informing the kernel about at least half of those
-pages via
-.Xr madvise 2 .
-This provides the kernel with sufficient information to recycle dirty pages if
-physical memory becomes scarce and the pages remain unused.
-The default is 512 pages per arena;
-.Ev MALLOC_OPTIONS=10f
-will prevent any dirty unused pages from accumulating.
-.It G
-When there are multiple threads, use thread-specific caching for objects that
-are smaller than one page.
-This option is enabled by default.
-Thread-specific caching allows many allocations to be satisfied without
-performing any thread synchronization, at the cost of increased memory use.
-See the
-.Dq R
-option for related tuning information.
-This option is not available for some configurations (non-PIC).
-.It J
-Each byte of new memory allocated by
-.Fn malloc ,
-.Fn realloc
-or
-.Fn reallocf
-will be initialized to 0xa5.
-All memory returned by
-.Fn free ,
-.Fn realloc
-or
-.Fn reallocf
-will be initialized to 0x5a.
-This is intended for debugging and will impact performance negatively.
-.It K
-Double/halve the virtual memory chunk size.
-The default chunk size is 1 MB.
-.It M
-Use
-.Xr mmap 2
-to acquire anonymously mapped memory.
-This option is enabled by default.
-If both the
-.Dq D
-and
-.Dq M
-options are enabled, the allocator prefers the DSS over anonymous mappings,
-but allocation only fails if memory cannot be acquired via either method.
-If neither option is enabled, then the
-.Dq M
-option is implicitly enabled in order to assure that there is a method for
-acquiring memory.
-.It N
-Double/halve the number of arenas.
-The default number of arenas is two times the number of CPUs, or one if there
-is a single CPU.
-.It P
-Various statistics are printed at program exit via an
-.Xr atexit 3
-function.
-This has the potential to cause deadlock for a multi-threaded process that exits
-while one or more threads are executing in the memory allocation functions.
-Therefore, this option should only be used with care; it is primarily intended
-as a performance tuning aid during application development.
-.It Q
-Double/halve the size of the maximum size class that is a multiple of the
-quantum (8 or 16 bytes, depending on architecture).
-Above this size, cacheline spacing is used for size classes.
-The default value is 128 bytes.
-.It R
-Double/halve magazine size, which approximately doubles/halves the number of
-rounds in each magazine.
-Magazines are used by the thread-specific caching machinery to acquire and
-release objects in bulk.
-Increasing the magazine size decreases locking overhead, at the expense of
-increased memory usage.
-This option is not available for some configurations (non-PIC).
-.It U
-Generate
-.Dq utrace
-entries for
-.Xr ktrace 1 ,
-for all operations.
-Consult the source for details on this option.
-.It V
-Attempting to allocate zero bytes will return a
-.Dv NULL
-pointer instead of
-a valid pointer.
-(The default behavior is to make a minimal allocation and return a
-pointer to it.)
-This option is provided for System V compatibility.
-This option is incompatible with the
-.Dq X
-option.
-.It X
-Rather than return failure for any allocation function,
-display a diagnostic message on
-.Dv stderr
-and cause the program to drop
-core (using
-.Xr abort 3 ) .
-This option should be set at compile time by including the following in
-the source code:
-.Bd -literal -offset indent
-_malloc_options = "X";
-.Ed
-.It Z
-Each byte of new memory allocated by
-.Fn malloc ,
-.Fn realloc
-or
-.Fn reallocf
-will be initialized to 0.
-Note that this initialization only happens once for each byte, so
-.Fn realloc
-and
-.Fn reallocf
-calls do not zero memory that was previously allocated.
-This is intended for debugging and will impact performance negatively.
-.El
-.Pp
-The
-.Dq J
-and
-.Dq Z
-options are intended for testing and debugging.
-An application which changes its behavior when these options are used
-is flawed.
-.Sh IMPLEMENTATION NOTES
-Traditionally, allocators have used
-.Xr sbrk 2
-to obtain memory, which is suboptimal for several reasons, including race
-conditions, increased fragmentation, and artificial limitations on maximum
-usable memory.
-This allocator uses both
-.Xr sbrk 2
-and
-.Xr mmap 2
-by default, but it can be configured at run time to use only one or the other.
-If resource limits are not a primary concern, the preferred configuration is
-.Ev MALLOC_OPTIONS=dM
-or
-.Ev MALLOC_OPTIONS=DM .
-When so configured, the
-.Ar datasize
-resource limit has little practical effect for typical applications; use
-.Ev MALLOC_OPTIONS=Dm
-if that is a concern.
-Regardless of allocator configuration, the
-.Ar vmemoryuse
-resource limit can be used to bound the total virtual memory used by a
-process, as described in
-.Xr limits 1 .
-.Pp
-This allocator uses multiple arenas in order to reduce lock contention for
-threaded programs on multi-processor systems.
-This works well with regard to threading scalability, but incurs some costs.
-There is a small fixed per-arena overhead, and additionally, arenas manage
-memory completely independently of each other, which means a small fixed
-increase in overall memory fragmentation.
-These overheads are not generally an issue, given the number of arenas normally
-used.
-Note that using substantially more arenas than the default is not likely to
-improve performance, mainly due to reduced cache performance.
-However, it may make sense to reduce the number of arenas if an application
-does not make much use of the allocation functions.
-.Pp
-In addition to multiple arenas, this allocator supports thread-specific
-caching for small objects (smaller than one page), in order to make it
-possible to completely avoid synchronization for most small allocation requests.
-Such caching allows very fast allocation in the common case, but it increases
-memory usage and fragmentation, since a bounded number of objects can remain
-allocated in each thread cache.
-.Pp
-Memory is conceptually broken into equal-sized chunks, where the chunk size is
-a power of two that is greater than the page size.
-Chunks are always aligned to multiples of the chunk size.
-This alignment makes it possible to find metadata for user objects very
-quickly.
-.Pp
-User objects are broken into three categories according to size: small, large,
-and huge.
-Small objects are smaller than one page.
-Large objects are smaller than the chunk size.
-Huge objects are a multiple of the chunk size.
-Small and large objects are managed by arenas; huge objects are managed
-separately in a single data structure that is shared by all threads.
-Huge objects are used by applications infrequently enough that this single
-data structure is not a scalability issue.
-.Pp
-Each chunk that is managed by an arena tracks its contents as runs of
-contiguous pages (unused, backing a set of small objects, or backing one large
-object).
-The combination of chunk alignment and chunk page maps makes it possible to
-determine all metadata regarding small and large allocations in constant time.
-.Pp
-Small objects are managed in groups by page runs.
-Each run maintains a bitmap that tracks which regions are in use.
-Allocation requests that are no more than half the quantum (8 or 16, depending
-on architecture) are rounded up to the nearest power of two.
-Allocation requests that are more than half the quantum, but no more than the
-minimum cacheline-multiple size class (see the
-.Dq Q
-option) are rounded up to the nearest multiple of the quantum.
-Allocation requests that are more than the minumum cacheline-multiple size
-class, but no more than the minimum subpage-multiple size class (see the
-.Dq C
-option) are rounded up to the nearest multiple of the cacheline size (64).
-Allocation requests that are more than the minimum subpage-multiple size class
-are rounded up to the nearest multiple of the subpage size (256).
-Allocation requests that are more than one page, but small enough to fit in
-an arena-managed chunk (see the
-.Dq K
-option), are rounded up to the nearest run size.
-Allocation requests that are too large to fit in an arena-managed chunk are
-rounded up to the nearest multiple of the chunk size.
-.Pp
-Allocations are packed tightly together, which can be an issue for
-multi-threaded applications.
-If you need to assure that allocations do not suffer from cacheline sharing,
-round your allocation requests up to the nearest multiple of the cacheline
-size.
-.Sh DEBUGGING MALLOC PROBLEMS
-The first thing to do is to set the
-.Dq A
-option.
-This option forces a coredump (if possible) at the first sign of trouble,
-rather than the normal policy of trying to continue if at all possible.
-.Pp
-It is probably also a good idea to recompile the program with suitable
-options and symbols for debugger support.
-.Pp
-If the program starts to give unusual results, coredump or generally behave
-differently without emitting any of the messages mentioned in the next
-section, it is likely because it depends on the storage being filled with
-zero bytes.
-Try running it with the
-.Dq Z
-option set;
-if that improves the situation, this diagnosis has been confirmed.
-If the program still misbehaves,
-the likely problem is accessing memory outside the allocated area.
-.Pp
-Alternatively, if the symptoms are not easy to reproduce, setting the
-.Dq J
-option may help provoke the problem.
-.Pp
-In truly difficult cases, the
-.Dq U
-option, if supported by the kernel, can provide a detailed trace of
-all calls made to these functions.
-.Pp
-Unfortunately this implementation does not provide much detail about
-the problems it detects; the performance impact for storing such information
-would be prohibitive.
-There are a number of allocator implementations available on the Internet
-which focus on detecting and pinpointing problems by trading performance for
-extra sanity checks and detailed diagnostics.
-.Sh DIAGNOSTIC MESSAGES
-If any of the memory allocation/deallocation functions detect an error or
-warning condition, a message will be printed to file descriptor
-.Dv STDERR_FILENO .
-Errors will result in the process dumping core.
-If the
-.Dq A
-option is set, all warnings are treated as errors.
-.Pp
-The
-.Va _malloc_message
-variable allows the programmer to override the function which emits
-the text strings forming the errors and warnings if for some reason
-the
-.Dv stderr
-file descriptor is not suitable for this.
-Please note that doing anything which tries to allocate memory in
-this function is likely to result in a crash or deadlock.
-.Pp
-All messages are prefixed by
-.Dq Ao Ar progname Ac Ns Li : (malloc) .
-.Sh RETURN VALUES
-The
-.Fn malloc
-and
-.Fn calloc
-functions return a pointer to the allocated memory if successful; otherwise
-a
-.Dv NULL
-pointer is returned and
-.Va errno
-is set to
-.Er ENOMEM .
-.Pp
-The
-.Fn realloc
-and
-.Fn reallocf
-functions return a pointer, possibly identical to
-.Fa ptr ,
-to the allocated memory
-if successful; otherwise a
-.Dv NULL
-pointer is returned, and
-.Va errno
-is set to
-.Er ENOMEM
-if the error was the result of an allocation failure.
-The
-.Fn realloc
-function always leaves the original buffer intact
-when an error occurs, whereas
-.Fn reallocf
-deallocates it in this case.
-.Pp
-The
-.Fn free
-function returns no value.
-.Pp
-The
-.Fn malloc_usable_size
-function returns the usable size of the allocation pointed to by
-.Fa ptr .
-.Sh ENVIRONMENT
-The following environment variables affect the execution of the allocation
-functions:
-.Bl -tag -width ".Ev MALLOC_OPTIONS"
-.It Ev MALLOC_OPTIONS
-If the environment variable
-.Ev MALLOC_OPTIONS
-is set, the characters it contains will be interpreted as flags to the
-allocation functions.
-.El
-.Sh EXAMPLES
-To dump core whenever a problem occurs:
-.Pp
-.Bd -literal -offset indent
-ln -s 'A' /etc/malloc.conf
-.Ed
-.Pp
-To specify in the source that a program does no return value checking
-on calls to these functions:
-.Bd -literal -offset indent
-_malloc_options = "X";
-.Ed
-.Sh SEE ALSO
-.Xr limits 1 ,
-.Xr madvise 2 ,
-.Xr mmap 2 ,
-.Xr sbrk 2 ,
-.Xr alloca 3 ,
-.Xr atexit 3 ,
-.Xr getpagesize 3 ,
-.Xr memory 3 ,
-.Xr posix_memalign 3
-.Sh STANDARDS
-The
-.Fn malloc ,
-.Fn calloc ,
-.Fn realloc
-and
-.Fn free
-functions conform to
-.St -isoC .
-.Sh HISTORY
-The
-.Fn reallocf
-function first appeared in
-.Fx 3.0 .
-.Pp
-The
-.Fn malloc_usable_size
-function first appeared in
-.Fx 7.0 .
diff --git a/lib/libjemalloc/malloc.c b/lib/libjemalloc/malloc.c
deleted file mode 100644
index 56d8a98..0000000
--- a/lib/libjemalloc/malloc.c
+++ /dev/null
@@ -1,5594 +0,0 @@
-/*-
- * Copyright (C) 2006-2008 Jason Evans <jasone at FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice(s), this list of conditions and the following disclaimer as
- *    the first lines of this file unmodified other than the possible
- *    addition of one or more copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice(s), this list of conditions and the following disclaimer in
- *    the documentation and/or other materials provided with the
- *    distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- *******************************************************************************
- *
- * This allocator implementation is designed to provide scalable performance
- * for multi-threaded programs on multi-processor systems.  The following
- * features are included for this purpose:
- *
- *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
- *     contention and cache sloshing.
- *
- *   + Thread-specific caching is used if there are multiple threads, which
- *     reduces the amount of locking.
- *
- *   + Cache line sharing between arenas is avoided for internal data
- *     structures.
- *
- *   + Memory is managed in chunks and runs (chunks can be split into runs),
- *     rather than as individual pages.  This provides a constant-time
- *     mechanism for associating allocations with particular arenas.
- *
- * Allocation requests are rounded up to the nearest size class, and no record
- * of the original request size is maintained.  Allocations are broken into
- * categories according to size class.  Assuming runtime defaults, 4 kB pages
- * and a 16 byte quantum on a 32-bit system, the size classes in each category
- * are as follows:
- *
- *   |=======================================|
- *   | Category | Subcategory      |    Size |
- *   |=======================================|
- *   | Small    | Tiny             |       2 |
- *   |          |                  |       4 |
- *   |          |                  |       8 |
- *   |          |------------------+---------|
- *   |          | Quantum-spaced   |      16 |
- *   |          |                  |      32 |
- *   |          |                  |      48 |
- *   |          |                  |     ... |
- *   |          |                  |      96 |
- *   |          |                  |     112 |
- *   |          |                  |     128 |
- *   |          |------------------+---------|
- *   |          | Cacheline-spaced |     192 |
- *   |          |                  |     256 |
- *   |          |                  |     320 |
- *   |          |                  |     384 |
- *   |          |                  |     448 |
- *   |          |                  |     512 |
- *   |          |------------------+---------|
- *   |          | Sub-page         |     760 |
- *   |          |                  |    1024 |
- *   |          |                  |    1280 |
- *   |          |                  |     ... |
- *   |          |                  |    3328 |
- *   |          |                  |    3584 |
- *   |          |                  |    3840 |
- *   |=======================================|
- *   | Large                       |    4 kB |
- *   |                             |    8 kB |
- *   |                             |   12 kB |
- *   |                             |     ... |
- *   |                             | 1012 kB |
- *   |                             | 1016 kB |
- *   |                             | 1020 kB |
- *   |=======================================|
- *   | Huge                        |    1 MB |
- *   |                             |    2 MB |
- *   |                             |    3 MB |
- *   |                             |     ... |
- *   |=======================================|
- *
- * A different mechanism is used for each category:
- *
- *   Small : Each size class is segregated into its own set of runs.  Each run
- *           maintains a bitmap of which regions are free/allocated.
- *
- *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
- *           in the associated arena chunk header maps.
- *
- *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
- *          Metadata are stored in a separate red-black tree.
- *
- *******************************************************************************
- */
-
-/*
- * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
- * defaults the A and J runtime options to off.  These settings are appropriate
- * for production systems.
- */
-/* #define	MALLOC_PRODUCTION */
-
-#ifndef MALLOC_PRODUCTION
-   /*
-    * MALLOC_DEBUG enables assertions and other sanity checks, and disables
-    * inline functions.
-    */
-#  define MALLOC_DEBUG
-
-   /* MALLOC_STATS enables statistics calculation. */
-#  define MALLOC_STATS
-#endif
-
-/*
- * MALLOC_TINY enables support for tiny objects, which are smaller than one
- * quantum.
- */
-#define	MALLOC_TINY
-
-/*
- * MALLOC_MAG enables a magazine-based thread-specific caching layer for small
- * objects.  This makes it possible to allocate/deallocate objects without any
- * locking when the cache is in the steady state.
- */
-#define	MALLOC_MAG
-
-/*
- * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
- * re-balances arena load if exponentially averaged contention exceeds a
- * certain threshold.
- */
-#define	MALLOC_BALANCE
-
-/*
- * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
- * segment (DSS).  In an ideal world, this functionality would be completely
- * unnecessary, but we are burdened by history and the lack of resource limits
- * for anonymous mapped memory.
- */
-#define	MALLOC_DSS
-
-#include <sys/cdefs.h>
-__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 182225 2008-08-27 02:00:53Z jasone $");
-
-#include "libc_private.h"
-#ifdef MALLOC_DEBUG
-#  define _LOCK_DEBUG
-#endif
-#include "spinlock.h"
-#include "namespace.h"
-#include <sys/mman.h>
-#include <sys/param.h>
-#include <sys/stddef.h>
-#include <sys/time.h>
-#include <sys/types.h>
-#include <sys/sysctl.h>
-#include <sys/uio.h>
-#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
-
-#include <machine/cpufunc.h>
-#include <machine/vmparam.h>
-
-#include <errno.h>
-#include <limits.h>
-#include <pthread.h>
-#include <sched.h>
-#include <stdarg.h>
-#include <stdbool.h>
-#include <stdio.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-#include <unistd.h>
-
-#include "un-namespace.h"
-
-#ifdef MALLOC_DEBUG
-#  ifdef NDEBUG
-#    undef NDEBUG
-#  endif
-#else
-#  ifndef NDEBUG
-#    define NDEBUG
-#  endif
-#endif
-#include <assert.h>
-
-#include "rb.h"
-
-#ifdef MALLOC_DEBUG
-   /* Disable inlining to make debugging easier. */
-#  define inline
-#endif
-
-/* Size of stack-allocated buffer passed to strerror_r(). */
-#define	STRERROR_BUF		64
-
-/*
- * The const_size2bin table is sized according to PAGESIZE_2POW, but for
- * correctness reasons, we never assume that
- * (pagesize == (1U << * PAGESIZE_2POW)).
- *
- * Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
- */
-#ifdef __i386__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	2
-#  define CPU_SPINWAIT		__asm__ volatile("pause")
-#endif
-#ifdef __ia64__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#endif
-#ifdef __alpha__
-#  define PAGESIZE_2POW		13
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#  define NO_TLS
-#endif
-#ifdef __sparc64__
-#  define PAGESIZE_2POW		13
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#  define NO_TLS
-#endif
-#ifdef __amd64__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	3
-#  define CPU_SPINWAIT		__asm__ volatile("pause")
-#endif
-#ifdef __arm__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		3
-#  define SIZEOF_PTR_2POW	2
-#  define NO_TLS
-#endif
-#ifdef __mips__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		3
-#  define SIZEOF_PTR_2POW	2
-#  define NO_TLS
-#endif
-#ifdef __powerpc__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		4
-#  define SIZEOF_PTR_2POW	2
-#endif
-#ifdef __sh__
-#  define PAGESIZE_2POW		12
-#  define QUANTUM_2POW		3
-#  define SIZEOF_PTR_2POW	2
-#  define NO_TLS
-#endif
-
-#define	QUANTUM			((size_t)(1U << QUANTUM_2POW))
-#define	QUANTUM_MASK		(QUANTUM - 1)
-
-#define	SIZEOF_PTR		(1U << SIZEOF_PTR_2POW)
-
-/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
-#ifndef SIZEOF_INT_2POW
-#  define SIZEOF_INT_2POW	2
-#endif
-
-/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
-#if (!defined(PIC) && !defined(NO_TLS))
-#  define NO_TLS
-#endif
-
-#ifdef NO_TLS
-   /* MALLOC_MAG requires TLS. */
-#  ifdef MALLOC_MAG
-#    undef MALLOC_MAG
-#  endif
-   /* MALLOC_BALANCE requires TLS. */
-#  ifdef MALLOC_BALANCE
-#    undef MALLOC_BALANCE
-#  endif
-#endif
-
-/*
- * Size and alignment of memory chunks that are allocated by the OS's virtual
- * memory system.
- */
-#define	CHUNK_2POW_DEFAULT	20
-
-/* Maximum number of dirty pages per arena. */
-#define	DIRTY_MAX_DEFAULT	(1U << 9)
-
-/*
- * Maximum size of L1 cache line.  This is used to avoid cache line aliasing.
- * In addition, this controls the spacing of cacheline-spaced size classes.
- */
-#define	CACHELINE_2POW		6
-#define	CACHELINE		((size_t)(1U << CACHELINE_2POW))
-#define	CACHELINE_MASK		(CACHELINE - 1)
-
-/*
- * Subpages are an artificially designated partitioning of pages.  Their only
- * purpose is to support subpage-spaced size classes.
- *
- * There must be at least 4 subpages per page, due to the way size classes are
- * handled.
- */
-#define	SUBPAGE_2POW		8
-#define	SUBPAGE			((size_t)(1U << SUBPAGE_2POW))
-#define	SUBPAGE_MASK		(SUBPAGE - 1)
-
-#ifdef MALLOC_TINY
-   /* Smallest size class to support. */
-#  define TINY_MIN_2POW		1
-#endif
-
-/*
- * Maximum size class that is a multiple of the quantum, but not (necessarily)
- * a power of 2.  Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define	QSPACE_MAX_2POW_DEFAULT	7
-
-/*
- * Maximum size class that is a multiple of the cacheline, but not (necessarily)
- * a power of 2.  Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define	CSPACE_MAX_2POW_DEFAULT	9
-
-/*
- * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
- * as small as possible such that this setting is still honored, without
- * violating other constraints.  The goal is to make runs as small as possible
- * without exceeding a per run external fragmentation threshold.
- *
- * We use binary fixed point math for overhead computations, where the binary
- * point is implicitly RUN_BFP bits to the left.
- *
- * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
- * honored for some/all object sizes, since there is one bit of header overhead
- * per object (plus a constant).  This constraint is relaxed (ignored) for runs
- * that are so small that the per-region overhead is greater than:
- *
- *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
- */
-#define	RUN_BFP			12
-/*                                    \/   Implicit binary fixed point. */
-#define	RUN_MAX_OVRHD		0x0000003dU
-#define	RUN_MAX_OVRHD_RELAX	0x00001800U
-
-/* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
-#define	RUN_MAX_SMALL	(12 * pagesize)
-
-/*
- * Hyper-threaded CPUs may need a special instruction inside spin loops in
- * order to yield to another virtual CPU.  If no such instruction is defined
- * above, make CPU_SPINWAIT a no-op.
- */
-#ifndef CPU_SPINWAIT
-#  define CPU_SPINWAIT
-#endif
-
-/*
- * Adaptive spinning must eventually switch to blocking, in order to avoid the
- * potential for priority inversion deadlock.  Backing off past a certain point
- * can actually waste time.
- */
-#define	SPIN_LIMIT_2POW		11
-
-/*
- * Conversion from spinning to blocking is expensive; we use (1U <<
- * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
- * worst-case spinning.
- */
-#define	BLOCK_COST_2POW		4
-
-#ifdef MALLOC_MAG
-   /*
-    * Default magazine size, in bytes.  max_rounds is calculated to make
-    * optimal use of the space, leaving just enough room for the magazine
-    * header.
-    */
-#  define MAG_SIZE_2POW_DEFAULT	9
-#endif
-
-#ifdef MALLOC_BALANCE
-   /*
-    * We use an exponential moving average to track recent lock contention,
-    * where the size of the history window is N, and alpha=2/(N+1).
-    *
-    * Due to integer math rounding, very small values here can cause
-    * substantial degradation in accuracy, thus making the moving average decay
-    * faster than it would with precise calculation.
-    */
-#  define BALANCE_ALPHA_INV_2POW	9
-
-   /*
-    * Threshold value for the exponential moving contention average at which to
-    * re-assign a thread.
-    */
-#  define BALANCE_THRESHOLD_DEFAULT	(1U << (SPIN_LIMIT_2POW-4))
-#endif
-
-/******************************************************************************/
-
-/*
- * Mutexes based on spinlocks.  We can't use normal pthread spinlocks in all
- * places, because they require malloc()ed memory, which causes bootstrapping
- * issues in some cases.
- */
-typedef struct {
-	spinlock_t	lock;
-} malloc_mutex_t;
-
-/* Set to true once the allocator has been initialized. */
-static bool malloc_initialized = false;
-
-/* Used to avoid initialization races. */
-static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
-
-/******************************************************************************/
-/*
- * Statistics data structures.
- */
-
-#ifdef MALLOC_STATS
-
-typedef struct malloc_bin_stats_s malloc_bin_stats_t;
-struct malloc_bin_stats_s {
-	/*
-	 * Number of allocation requests that corresponded to the size of this
-	 * bin.
-	 */
-	uint64_t	nrequests;
-
-#ifdef MALLOC_MAG
-	/* Number of magazine reloads from this bin. */
-	uint64_t	nmags;
-#endif
-
-	/* Total number of runs created for this bin's size class. */
-	uint64_t	nruns;
-
-	/*
-	 * Total number of runs reused by extracting them from the runs tree for
-	 * this bin's size class.
-	 */
-	uint64_t	reruns;
-
-	/* High-water mark for this bin. */
-	unsigned long	highruns;
-
-	/* Current number of runs in this bin. */
-	unsigned long	curruns;
-};
-
-typedef struct arena_stats_s arena_stats_t;
-struct arena_stats_s {
-	/* Number of bytes currently mapped. */
-	size_t		mapped;
-
-	/*
-	 * Total number of purge sweeps, total number of madvise calls made,
-	 * and total pages purged in order to keep dirty unused memory under
-	 * control.
-	 */
-	uint64_t	npurge;
-	uint64_t	nmadvise;
-	uint64_t	purged;
-
-	/* Per-size-category statistics. */
-	size_t		allocated_small;
-	uint64_t	nmalloc_small;
-	uint64_t	ndalloc_small;
-
-	size_t		allocated_large;
-	uint64_t	nmalloc_large;
-	uint64_t	ndalloc_large;
-
-#ifdef MALLOC_BALANCE
-	/* Number of times this arena reassigned a thread due to contention. */
-	uint64_t	nbalance;
-#endif
-};
-
-typedef struct chunk_stats_s chunk_stats_t;
-struct chunk_stats_s {
-	/* Number of chunks that were allocated. */
-	uint64_t	nchunks;
-
-	/* High-water mark for number of chunks allocated. */
-	unsigned long	highchunks;
-
-	/*
-	 * Current number of chunks allocated.  This value isn't maintained for
-	 * any other purpose, so keep track of it in order to be able to set
-	 * highchunks.
-	 */
-	unsigned long	curchunks;
-};
-
-#endif /* #ifdef MALLOC_STATS */
-
-/******************************************************************************/
-/*
- * Extent data structures.
- */
-
-/* Tree of extents. */
-typedef struct extent_node_s extent_node_t;
-struct extent_node_s {
-#ifdef MALLOC_DSS
-	/* Linkage for the size/address-ordered tree. */
-	rb_node(extent_node_t) link_szad;
-#endif
-
-	/* Linkage for the address-ordered tree. */
-	rb_node(extent_node_t) link_ad;
-
-	/* Pointer to the extent that this tree node is responsible for. */
-	void	*addr;
-
-	/* Total region size. */
-	size_t	size;
-};
-typedef rb_tree(extent_node_t) extent_tree_t;
-
-/******************************************************************************/
-/*
- * Arena data structures.
- */
-
-typedef struct arena_s arena_t;
-typedef struct arena_bin_s arena_bin_t;
-
-/* Each element of the chunk map corresponds to one page within the chunk. */
-typedef struct arena_chunk_map_s arena_chunk_map_t;
-struct arena_chunk_map_s {
-	/*
-	 * Linkage for run trees.  There are two disjoint uses:
-	 *
-	 * 1) arena_t's runs_avail tree.
-	 * 2) arena_run_t conceptually uses this linkage for in-use non-full
-	 *    runs, rather than directly embedding linkage.
-	 */
-	rb_node(arena_chunk_map_t)	link;
-
-	/*
-	 * Run address (or size) and various flags are stored together.  The bit
-	 * layout looks like (assuming 32-bit system):
-	 *
-	 *   ???????? ???????? ????---- ---kdzla
-	 *
-	 * ? : Unallocated: Run address for first/last pages, unset for internal
-	 *                  pages.
-	 *     Small: Run address.
-	 *     Large: Run size for first page, unset for trailing pages.
-	 * - : Unused.
-	 * k : key?
-	 * d : dirty?
-	 * z : zeroed?
-	 * l : large?
-	 * a : allocated?
-	 *
-	 * Following are example bit patterns for the three types of runs.
-	 *
-	 * r : run address
-	 * s : run size
-	 * x : don't care
-	 * - : 0
-	 * [dzla] : bit set
-	 *
-	 *   Unallocated:
-	 *     ssssssss ssssssss ssss---- --------
-	 *     xxxxxxxx xxxxxxxx xxxx---- ----d---
-	 *     ssssssss ssssssss ssss---- -----z--
-	 *
-	 *   Small:
-	 *     rrrrrrrr rrrrrrrr rrrr---- -------a
-	 *     rrrrrrrr rrrrrrrr rrrr---- -------a
-	 *     rrrrrrrr rrrrrrrr rrrr---- -------a
-	 *
-	 *   Large:
-	 *     ssssssss ssssssss ssss---- ------la
-	 *     -------- -------- -------- ------la
-	 *     -------- -------- -------- ------la
-	 */
-	size_t				bits;
-#define	CHUNK_MAP_KEY		((size_t)0x10U)
-#define	CHUNK_MAP_DIRTY		((size_t)0x08U)
-#define	CHUNK_MAP_ZEROED	((size_t)0x04U)
-#define	CHUNK_MAP_LARGE		((size_t)0x02U)
-#define	CHUNK_MAP_ALLOCATED	((size_t)0x01U)
-};
-typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
-typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
-
-/* Arena chunk header. */
-typedef struct arena_chunk_s arena_chunk_t;
-struct arena_chunk_s {
-	/* Arena that owns the chunk. */
-	arena_t		*arena;
-
-	/* Linkage for the arena's chunks_dirty tree. */
-	rb_node(arena_chunk_t) link_dirty;
-
-	/* Number of dirty pages. */
-	size_t		ndirty;
-
-	/* Map of pages within chunk that keeps track of free/large/small. */
-	arena_chunk_map_t map[1]; /* Dynamically sized. */
-};
-typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
-
-typedef struct arena_run_s arena_run_t;
-struct arena_run_s {
-#ifdef MALLOC_DEBUG
-	uint32_t	magic;
-#  define ARENA_RUN_MAGIC 0x384adf93
-#endif
-
-	/* Bin this run is associated with. */
-	arena_bin_t	*bin;
-
-	/* Index of first element that might have a free region. */
-	unsigned	regs_minelm;
-
-	/* Number of free regions in run. */
-	unsigned	nfree;
-
-	/* Bitmask of in-use regions (0: in use, 1: free). */
-	unsigned	regs_mask[1]; /* Dynamically sized. */
-};
-
-struct arena_bin_s {
-	/*
-	 * Current run being used to service allocations of this bin's size
-	 * class.
-	 */
-	arena_run_t	*runcur;
-
-	/*
-	 * Tree of non-full runs.  This tree is used when looking for an
-	 * existing run when runcur is no longer usable.  We choose the
-	 * non-full run that is lowest in memory; this policy tends to keep
-	 * objects packed well, and it can also help reduce the number of
-	 * almost-empty chunks.
-	 */
-	arena_run_tree_t runs;
-
-	/* Size of regions in a run for this bin's size class. */
-	size_t		reg_size;
-
-	/* Total size of a run for this bin's size class. */
-	size_t		run_size;
-
-	/* Total number of regions in a run for this bin's size class. */
-	uint32_t	nregs;
-
-	/* Number of elements in a run's regs_mask for this bin's size class. */
-	uint32_t	regs_mask_nelms;
-
-	/* Offset of first region in a run for this bin's size class. */
-	uint32_t	reg0_offset;
-
-#ifdef MALLOC_STATS
-	/* Bin statistics. */
-	malloc_bin_stats_t stats;
-#endif
-};
-
-struct arena_s {
-#ifdef MALLOC_DEBUG
-	uint32_t		magic;
-#  define ARENA_MAGIC 0x947d3d24
-#endif
-
-	/* All operations on this arena require that lock be locked. */
-	pthread_mutex_t		lock;
-
-#ifdef MALLOC_STATS
-	arena_stats_t		stats;
-#endif
-
-	/* Tree of dirty-page-containing chunks this arena manages. */
-	arena_chunk_tree_t	chunks_dirty;
-
-	/*
-	 * In order to avoid rapid chunk allocation/deallocation when an arena
-	 * oscillates right on the cusp of needing a new chunk, cache the most
-	 * recently freed chunk.  The spare is left in the arena's chunk trees
-	 * until it is deleted.
-	 *
-	 * There is one spare chunk per arena, rather than one spare total, in
-	 * order to avoid interactions between multiple threads that could make
-	 * a single spare inadequate.
-	 */
-	arena_chunk_t		*spare;
-
-	/*
-	 * Current count of pages within unused runs that are potentially
-	 * dirty, and for which madvise(... MADV_FREE) has not been called.  By
-	 * tracking this, we can institute a limit on how much dirty unused
-	 * memory is mapped for each arena.
-	 */
-	size_t			ndirty;
-
-	/*
-	 * Size/address-ordered tree of this arena's available runs.  This tree
-	 * is used for first-best-fit run allocation.
-	 */
-	arena_avail_tree_t	runs_avail;
-
-#ifdef MALLOC_BALANCE
-	/*
-	 * The arena load balancing machinery needs to keep track of how much
-	 * lock contention there is.  This value is exponentially averaged.
-	 */
-	uint32_t		contention;
-#endif
-
-	/*
-	 * bins is used to store rings of free regions of the following sizes,
-	 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
-	 *
-	 *   bins[i] | size |
-	 *   --------+------+
-	 *        0  |    2 |
-	 *        1  |    4 |
-	 *        2  |    8 |
-	 *   --------+------+
-	 *        3  |   16 |
-	 *        4  |   32 |
-	 *        5  |   48 |
-	 *        6  |   64 |
-	 *           :      :
-	 *           :      :
-	 *       33  |  496 |
-	 *       34  |  512 |
-	 *   --------+------+
-	 *       35  | 1024 |
-	 *       36  | 2048 |
-	 *   --------+------+
-	 */
-	arena_bin_t		bins[1]; /* Dynamically sized. */
-};
-
-/******************************************************************************/
-/*
- * Magazine data structures.
- */
-
-#ifdef MALLOC_MAG
-typedef struct mag_s mag_t;
-struct mag_s {
-	size_t		binind; /* Index of associated bin. */
-	size_t		nrounds;
-	void		*rounds[1]; /* Dynamically sized. */
-};
-
-/*
- * Magazines are lazily allocated, but once created, they remain until the
- * associated mag_rack is destroyed.
- */
-typedef struct bin_mags_s bin_mags_t;
-struct bin_mags_s {
-	mag_t	*curmag;
-	mag_t	*sparemag;
-};
-
-typedef struct mag_rack_s mag_rack_t;
-struct mag_rack_s {
-	bin_mags_t	bin_mags[1]; /* Dynamically sized. */
-};
-#endif
-
-/******************************************************************************/
-/*
- * Data.
- */
-
-/* Number of CPUs. */
-static unsigned		ncpus;
-
-/* VM page size. */
-static size_t		pagesize;
-static size_t		pagesize_mask;
-static size_t		pagesize_2pow;
-
-/* Various bin-related settings. */
-#ifdef MALLOC_TINY		/* Number of (2^n)-spaced tiny bins. */
-#  define		ntbins	((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
-#else
-#  define		ntbins	0
-#endif
-static unsigned		nqbins; /* Number of quantum-spaced bins. */
-static unsigned		ncbins; /* Number of cacheline-spaced bins. */
-static unsigned		nsbins; /* Number of subpage-spaced bins. */
-static unsigned		nbins;
-#ifdef MALLOC_TINY
-#  define		tspace_max	((size_t)(QUANTUM >> 1))
-#endif
-#define			qspace_min	QUANTUM
-static size_t		qspace_max;
-static size_t		cspace_min;
-static size_t		cspace_max;
-static size_t		sspace_min;
-static size_t		sspace_max;
-#define			bin_maxclass	sspace_max
-
-static uint8_t const	*size2bin;
-/*
- * const_size2bin is a static constant lookup table that in the common case can
- * be used as-is for size2bin.  For dynamically linked programs, this avoids
- * a page of memory overhead per process.
- */
-#define	S2B_1(i)	i,
-#define	S2B_2(i)	S2B_1(i) S2B_1(i)
-#define	S2B_4(i)	S2B_2(i) S2B_2(i)
-#define	S2B_8(i)	S2B_4(i) S2B_4(i)
-#define	S2B_16(i)	S2B_8(i) S2B_8(i)
-#define	S2B_32(i)	S2B_16(i) S2B_16(i)
-#define	S2B_64(i)	S2B_32(i) S2B_32(i)
-#define	S2B_128(i)	S2B_64(i) S2B_64(i)
-#define	S2B_256(i)	S2B_128(i) S2B_128(i)
-static const uint8_t	const_size2bin[(1U << PAGESIZE_2POW) - 255] = {
-	S2B_1(0xffU)		/*    0 */
-#if (QUANTUM_2POW == 4)
-/* 64-bit system ************************/
-#  ifdef MALLOC_TINY
-	S2B_2(0)		/*    2 */
-	S2B_2(1)		/*    4 */
-	S2B_4(2)		/*    8 */
-	S2B_8(3)		/*   16 */
-#    define S2B_QMIN 3
-#  else
-	S2B_16(0)		/*   16 */
-#    define S2B_QMIN 0
-#  endif
-	S2B_16(S2B_QMIN + 1)	/*   32 */
-	S2B_16(S2B_QMIN + 2)	/*   48 */
-	S2B_16(S2B_QMIN + 3)	/*   64 */
-	S2B_16(S2B_QMIN + 4)	/*   80 */
-	S2B_16(S2B_QMIN + 5)	/*   96 */
-	S2B_16(S2B_QMIN + 6)	/*  112 */
-	S2B_16(S2B_QMIN + 7)	/*  128 */
-#  define S2B_CMIN (S2B_QMIN + 8)
-#else
-/* 32-bit system ************************/
-#  ifdef MALLOC_TINY
-	S2B_2(0)		/*    2 */
-	S2B_2(1)		/*    4 */
-	S2B_4(2)		/*    8 */
-#    define S2B_QMIN 2
-#  else
-	S2B_8(0)		/*    8 */
-#    define S2B_QMIN 0
-#  endif
-	S2B_8(S2B_QMIN + 1)	/*   16 */
-	S2B_8(S2B_QMIN + 2)	/*   24 */
-	S2B_8(S2B_QMIN + 3)	/*   32 */
-	S2B_8(S2B_QMIN + 4)	/*   40 */
-	S2B_8(S2B_QMIN + 5)	/*   48 */
-	S2B_8(S2B_QMIN + 6)	/*   56 */
-	S2B_8(S2B_QMIN + 7)	/*   64 */
-	S2B_8(S2B_QMIN + 8)	/*   72 */
-	S2B_8(S2B_QMIN + 9)	/*   80 */
-	S2B_8(S2B_QMIN + 10)	/*   88 */
-	S2B_8(S2B_QMIN + 11)	/*   96 */
-	S2B_8(S2B_QMIN + 12)	/*  104 */
-	S2B_8(S2B_QMIN + 13)	/*  112 */
-	S2B_8(S2B_QMIN + 14)	/*  120 */
-	S2B_8(S2B_QMIN + 15)	/*  128 */
-#  define S2B_CMIN (S2B_QMIN + 16)
-#endif
-/****************************************/
-	S2B_64(S2B_CMIN + 0)	/*  192 */
-	S2B_64(S2B_CMIN + 1)	/*  256 */
-	S2B_64(S2B_CMIN + 2)	/*  320 */
-	S2B_64(S2B_CMIN + 3)	/*  384 */
-	S2B_64(S2B_CMIN + 4)	/*  448 */
-	S2B_64(S2B_CMIN + 5)	/*  512 */
-#  define S2B_SMIN (S2B_CMIN + 6)
-	S2B_256(S2B_SMIN + 0)	/*  768 */
-	S2B_256(S2B_SMIN + 1)	/* 1024 */
-	S2B_256(S2B_SMIN + 2)	/* 1280 */
-	S2B_256(S2B_SMIN + 3)	/* 1536 */
-	S2B_256(S2B_SMIN + 4)	/* 1792 */
-	S2B_256(S2B_SMIN + 5)	/* 2048 */
-	S2B_256(S2B_SMIN + 6)	/* 2304 */
-	S2B_256(S2B_SMIN + 7)	/* 2560 */
-	S2B_256(S2B_SMIN + 8)	/* 2816 */
-	S2B_256(S2B_SMIN + 9)	/* 3072 */
-	S2B_256(S2B_SMIN + 10)	/* 3328 */
-	S2B_256(S2B_SMIN + 11)	/* 3584 */
-	S2B_256(S2B_SMIN + 12)	/* 3840 */
-#if (PAGESIZE_2POW == 13)
-	S2B_256(S2B_SMIN + 13)	/* 4096 */
-	S2B_256(S2B_SMIN + 14)	/* 4352 */
-	S2B_256(S2B_SMIN + 15)	/* 4608 */
-	S2B_256(S2B_SMIN + 16)	/* 4864 */
-	S2B_256(S2B_SMIN + 17)	/* 5120 */
-	S2B_256(S2B_SMIN + 18)	/* 5376 */
-	S2B_256(S2B_SMIN + 19)	/* 5632 */
-	S2B_256(S2B_SMIN + 20)	/* 5888 */
-	S2B_256(S2B_SMIN + 21)	/* 6144 */
-	S2B_256(S2B_SMIN + 22)	/* 6400 */
-	S2B_256(S2B_SMIN + 23)	/* 6656 */
-	S2B_256(S2B_SMIN + 24)	/* 6912 */
-	S2B_256(S2B_SMIN + 25)	/* 7168 */
-	S2B_256(S2B_SMIN + 26)	/* 7424 */
-	S2B_256(S2B_SMIN + 27)	/* 7680 */
-	S2B_256(S2B_SMIN + 28)	/* 7936 */
-#endif
-};
-#undef S2B_1
-#undef S2B_2
-#undef S2B_4
-#undef S2B_8
-#undef S2B_16
-#undef S2B_32
-#undef S2B_64
-#undef S2B_128
-#undef S2B_256
-#undef S2B_QMIN
-#undef S2B_CMIN
-#undef S2B_SMIN
-
-#ifdef MALLOC_MAG
-static size_t		max_rounds;
-#endif
-
-/* Various chunk-related settings. */
-static size_t		chunksize;
-static size_t		chunksize_mask; /* (chunksize - 1). */
-static size_t		chunk_npages;
-static size_t		arena_chunk_header_npages;
-static size_t		arena_maxclass; /* Max size class for arenas. */
-
-/********/
-/*
- * Chunks.
- */
-
-/* Protects chunk-related data structures. */
-static malloc_mutex_t	huge_mtx;
-
-/* Tree of chunks that are stand-alone huge allocations. */
-static extent_tree_t	huge;
-
-#ifdef MALLOC_DSS
-/*
- * Protects sbrk() calls.  This avoids malloc races among threads, though it
- * does not protect against races with threads that call sbrk() directly.
- */
-static malloc_mutex_t	dss_mtx;
-/* Base address of the DSS. */
-static void		*dss_base;
-/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
-static void		*dss_prev;
-/* Current upper limit on DSS addresses. */
-static void		*dss_max;
-
-/*
- * Trees of chunks that were previously allocated (trees differ only in node
- * ordering).  These are used when allocating chunks, in an attempt to re-use
- * address space.  Depending on function, different tree orderings are needed,
- * which is why there are two trees with the same contents.
- */
-static extent_tree_t	dss_chunks_szad;
-static extent_tree_t	dss_chunks_ad;
-#endif
-
-#ifdef MALLOC_STATS
-/* Huge allocation statistics. */
-static uint64_t		huge_nmalloc;
-static uint64_t		huge_ndalloc;
-static size_t		huge_allocated;
-#endif
-
-/****************************/
-/*
- * base (internal allocation).
- */
-
-/*
- * Current pages that are being used for internal memory allocations.  These
- * pages are carved up in cacheline-size quanta, so that there is no chance of
- * false cache line sharing.
- */
-static void		*base_pages;
-static void		*base_next_addr;
-static void		*base_past_addr; /* Addr immediately past base_pages. */
-static extent_node_t	*base_nodes;
-static malloc_mutex_t	base_mtx;
-#ifdef MALLOC_STATS
-static size_t		base_mapped;
-#endif
-
-/********/
-/*
- * Arenas.
- */
-
-/*
- * Arenas that are used to service external requests.  Not all elements of the
- * arenas array are necessarily used; arenas are created lazily as needed.
- */
-static arena_t		**arenas;
-static unsigned		narenas;
-#ifndef NO_TLS
-#  ifdef MALLOC_BALANCE
-static unsigned		narenas_2pow;
-#  else
-static unsigned		next_arena;
-#  endif
-#endif
-static pthread_mutex_t	arenas_lock; /* Protects arenas initialization. */
-
-#ifndef NO_TLS
-/*
- * Map of pthread_self() --> arenas[???], used for selecting an arena to use
- * for allocations.
- */
-static __thread arena_t	*arenas_map;
-#endif
-
-#ifdef MALLOC_MAG
-/*
- * Map of thread-specific magazine racks, used for thread-specific object
- * caching.
- */
-static __thread mag_rack_t	*mag_rack;
-#endif
-
-#ifdef MALLOC_STATS
-/* Chunk statistics. */
-static chunk_stats_t	stats_chunks;
-#endif
-
-/*******************************/
-/*
- * Runtime configuration options.
- */
-const char	*_malloc_options;
-
-#ifndef MALLOC_PRODUCTION
-static bool	opt_abort = true;
-static bool	opt_junk = true;
-#else
-static bool	opt_abort = false;
-static bool	opt_junk = false;
-#endif
-#ifdef MALLOC_DSS
-static bool	opt_dss = true;
-static bool	opt_mmap = true;
-#endif
-#ifdef MALLOC_MAG
-static bool	opt_mag = true;
-static size_t	opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
-#endif
-static size_t	opt_dirty_max = DIRTY_MAX_DEFAULT;
-#ifdef MALLOC_BALANCE
-static uint64_t	opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
-#endif
-static bool	opt_print_stats = false;
-static size_t	opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
-static size_t	opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
-static size_t	opt_chunk_2pow = CHUNK_2POW_DEFAULT;
-static bool	opt_utrace = false;
-static bool	opt_sysv = false;
-static bool	opt_xmalloc = false;
-static bool	opt_zero = false;
-static int	opt_narenas_lshift = 0;
-
-typedef struct {
-	void	*p;
-	size_t	s;
-	void	*r;
-} malloc_utrace_t;
-
-#define	UTRACE(a, b, c)							\
-	if (opt_utrace) {						\
-		malloc_utrace_t ut;					\
-		ut.p = (a);						\
-		ut.s = (b);						\
-		ut.r = (c);						\
-		utrace(&ut, sizeof(ut));				\
-	}
-
-/******************************************************************************/
-/*
- * Begin function prototypes for non-inline static functions.
- */
-
-static void	malloc_mutex_init(malloc_mutex_t *mutex);
-static bool	malloc_spin_init(pthread_mutex_t *lock);
-static void	wrtmessage(const char *p1, const char *p2, const char *p3,
-		const char *p4);
-#ifdef MALLOC_STATS
-static void	malloc_printf(const char *format, ...);
-#endif
-static char	*umax2s(uintmax_t x, char *s);
-#ifdef MALLOC_DSS
-static bool	base_pages_alloc_dss(size_t minsize);
-#endif
-static bool	base_pages_alloc_mmap(size_t minsize);
-static bool	base_pages_alloc(size_t minsize);
-static void	*base_alloc(size_t size);
-static void	*base_calloc(size_t number, size_t size);
-static extent_node_t *base_node_alloc(void);
-static void	base_node_dealloc(extent_node_t *node);
-#ifdef MALLOC_STATS
-static void	stats_print(arena_t *arena);
-#endif
-static void	*pages_map(void *addr, size_t size);
-static void	pages_unmap(void *addr, size_t size);
-#ifdef MALLOC_DSS
-static void	*chunk_alloc_dss(size_t size);
-static void	*chunk_recycle_dss(size_t size, bool zero);
-#endif
-static void	*chunk_alloc_mmap(size_t size);
-static void	*chunk_alloc(size_t size, bool zero);
-#ifdef MALLOC_DSS
-static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
-static bool	chunk_dealloc_dss(void *chunk, size_t size);
-#endif
-static void	chunk_dealloc_mmap(void *chunk, size_t size);
-static void	chunk_dealloc(void *chunk, size_t size);
-#ifndef NO_TLS
-static arena_t	*choose_arena_hard(void);
-#endif
-static void	arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
-    bool large, bool zero);
-static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
-static void	arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
-static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
-    bool zero);
-static void	arena_purge(arena_t *arena);
-static void	arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
-static void	arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
-    arena_run_t *run, size_t oldsize, size_t newsize);
-static void	arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
-    arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
-static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
-static void	*arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
-static size_t	arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
-#ifdef MALLOC_BALANCE
-static void	arena_lock_balance_hard(arena_t *arena);
-#endif
-#ifdef MALLOC_MAG
-static void	mag_load(mag_t *mag);
-#endif
-static void	*arena_malloc_large(arena_t *arena, size_t size, bool zero);
-static void	*arena_palloc(arena_t *arena, size_t alignment, size_t size,
-    size_t alloc_size);
-static size_t	arena_salloc(const void *ptr);
-#ifdef MALLOC_MAG
-static void	mag_unload(mag_t *mag);
-#endif
-static void	arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
-    void *ptr);
-static void	arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
-    void *ptr, size_t size, size_t oldsize);
-static bool	arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
-    void *ptr, size_t size, size_t oldsize);
-static bool	arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
-static void	*arena_ralloc(void *ptr, size_t size, size_t oldsize);
-static bool	arena_new(arena_t *arena);
-static arena_t	*arenas_extend(unsigned ind);
-#ifdef MALLOC_MAG
-static mag_t	*mag_create(arena_t *arena, size_t binind);
-static void	mag_destroy(mag_t *mag);
-static mag_rack_t *mag_rack_create(arena_t *arena);
-static void	mag_rack_destroy(mag_rack_t *rack);
-#endif
-static void	*huge_malloc(size_t size, bool zero);
-static void	*huge_palloc(size_t alignment, size_t size);
-static void	*huge_ralloc(void *ptr, size_t size, size_t oldsize);
-static void	huge_dalloc(void *ptr);
-static void	malloc_print_stats(void);
-#ifdef MALLOC_DEBUG
-static void	size2bin_validate(void);
-#endif
-static bool	size2bin_init(void);
-static bool	size2bin_init_hard(void);
-static bool	malloc_init_hard(void);
-
-/*
- * End function prototypes.
- */
-/******************************************************************************/
-/*
- * Begin mutex.  We can't use normal pthread mutexes in all places, because
- * they require malloc()ed memory, which causes bootstrapping issues in some
- * cases.
- */
-
-static void
-malloc_mutex_init(malloc_mutex_t *mutex)
-{
-	static const spinlock_t lock = _SPINLOCK_INITIALIZER;
-
-	mutex->lock = lock;
-}
-
-static inline void
-malloc_mutex_lock(malloc_mutex_t *mutex)
-{
-
-	if (__isthreaded)
-		_SPINLOCK(&mutex->lock);
-}
-
-static inline void
-malloc_mutex_unlock(malloc_mutex_t *mutex)
-{
-
-	if (__isthreaded)
-		_SPINUNLOCK(&mutex->lock);
-}
-
-/*
- * End mutex.
- */
-/******************************************************************************/
-/*
- * Begin spin lock.  Spin locks here are actually adaptive mutexes that block
- * after a period of spinning, because unbounded spinning would allow for
- * priority inversion.
- */
-
-/*
- * We use an unpublished interface to initialize pthread mutexes with an
- * allocation callback, in order to avoid infinite recursion.
- */
-int	_pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
-    void *(calloc_cb)(size_t, size_t));
-
-__weak_reference(_pthread_mutex_init_calloc_cb_stub,
-    _pthread_mutex_init_calloc_cb);
-
-int
-_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
-    void *(calloc_cb)(size_t, size_t))
-{
-
-	return (0);
-}
-
-static bool
-malloc_spin_init(pthread_mutex_t *lock)
-{
-
-	if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
-		return (true);
-
-	return (false);
-}
-
-static inline unsigned
-malloc_spin_lock(pthread_mutex_t *lock)
-{
-	unsigned ret = 0;
-
-	if (__isthreaded) {
-		if (_pthread_mutex_trylock(lock) != 0) {
-			unsigned i;
-			volatile unsigned j;
-
-			/* Exponentially back off. */
-			for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
-				for (j = 0; j < (1U << i); j++) {
-					ret++;
-					CPU_SPINWAIT;
-				}
-
-				if (_pthread_mutex_trylock(lock) == 0)
-					return (ret);
-			}
-
-			/*
-			 * Spinning failed.  Block until the lock becomes
-			 * available, in order to avoid indefinite priority
-			 * inversion.
-			 */
-			_pthread_mutex_lock(lock);
-			assert((ret << BLOCK_COST_2POW) != 0);
-			return (ret << BLOCK_COST_2POW);
-		}
-	}
-
-	return (ret);
-}
-
-static inline void
-malloc_spin_unlock(pthread_mutex_t *lock)
-{
-
-	if (__isthreaded)
-		_pthread_mutex_unlock(lock);
-}
-
-/*
- * End spin lock.
- */
-/******************************************************************************/
-/*
- * Begin Utility functions/macros.
- */
-
-/* Return the chunk address for allocation address a. */
-#define	CHUNK_ADDR2BASE(a)						\
-	((void *)((uintptr_t)(a) & ~chunksize_mask))
-
-/* Return the chunk offset of address a. */
-#define	CHUNK_ADDR2OFFSET(a)						\
-	((size_t)((uintptr_t)(a) & chunksize_mask))
-
-/* Return the smallest chunk multiple that is >= s. */
-#define	CHUNK_CEILING(s)						\
-	(((s) + chunksize_mask) & ~chunksize_mask)
-
-/* Return the smallest quantum multiple that is >= a. */
-#define	QUANTUM_CEILING(a)						\
-	(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
-
-/* Return the smallest cacheline multiple that is >= s. */
-#define	CACHELINE_CEILING(s)						\
-	(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
-
-/* Return the smallest subpage multiple that is >= s. */
-#define	SUBPAGE_CEILING(s)						\
-	(((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
-
-/* Return the smallest pagesize multiple that is >= s. */
-#define	PAGE_CEILING(s)							\
-	(((s) + pagesize_mask) & ~pagesize_mask)
-
-#ifdef MALLOC_TINY
-/* Compute the smallest power of 2 that is >= x. */
-static inline size_t
-pow2_ceil(size_t x)
-{
-
-	x--;
-	x |= x >> 1;
-	x |= x >> 2;
-	x |= x >> 4;
-	x |= x >> 8;
-	x |= x >> 16;
-#if (SIZEOF_PTR == 8)
-	x |= x >> 32;
-#endif
-	x++;
-	return (x);
-}
-#endif
-
-#ifdef MALLOC_BALANCE
-/*
- * Use a simple linear congruential pseudo-random number generator:
- *
- *   prn(y) = (a*x + c) % m
- *
- * where the following constants ensure maximal period:
- *
- *   a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
- *   c == Odd number (relatively prime to 2^n).
- *   m == 2^32
- *
- * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
- *
- * This choice of m has the disadvantage that the quality of the bits is
- * proportional to bit position.  For example. the lowest bit has a cycle of 2,
- * the next has a cycle of 4, etc.  For this reason, we prefer to use the upper
- * bits.
- */
-#  define PRN_DEFINE(suffix, var, a, c)					\
-static inline void							\
-sprn_##suffix(uint32_t seed)						\
-{									\
-	var = seed;							\
-}									\
-									\
-static inline uint32_t							\
-prn_##suffix(uint32_t lg_range)						\
-{									\
-	uint32_t ret, x;						\
-									\
-	assert(lg_range > 0);						\
-	assert(lg_range <= 32);						\
-									\
-	x = (var * (a)) + (c);						\
-	var = x;							\
-	ret = x >> (32 - lg_range);					\
-									\
-	return (ret);							\
-}
-#  define SPRN(suffix, seed)	sprn_##suffix(seed)
-#  define PRN(suffix, lg_range)	prn_##suffix(lg_range)
-#endif
-
-#ifdef MALLOC_BALANCE
-/* Define the PRNG used for arena assignment. */
-static __thread uint32_t balance_x;
-PRN_DEFINE(balance, balance_x, 1297, 1301)
-#endif
-
-static void
-wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
-{
-
-	_write(STDERR_FILENO, p1, strlen(p1));
-	_write(STDERR_FILENO, p2, strlen(p2));
-	_write(STDERR_FILENO, p3, strlen(p3));
-	_write(STDERR_FILENO, p4, strlen(p4));
-}
-
-void	(*_malloc_message)(const char *p1, const char *p2, const char *p3,
-	    const char *p4) = wrtmessage;
-
-#ifdef MALLOC_STATS
-/*
- * Print to stderr in such a way as to (hopefully) avoid memory allocation.
- */
-static void
-malloc_printf(const char *format, ...)
-{
-	char buf[4096];
-	va_list ap;
-
-	va_start(ap, format);
-	vsnprintf(buf, sizeof(buf), format, ap);
-	va_end(ap);
-	_malloc_message(buf, "", "", "");
-}
-#endif
-
-/*
- * We don't want to depend on vsnprintf() for production builds, since that can
- * cause unnecessary bloat for static binaries.  umax2s() provides minimal
- * integer printing functionality, so that malloc_printf() use can be limited to
- * MALLOC_STATS code.
- */
-#define	UMAX2S_BUFSIZE	21
-static char *
-umax2s(uintmax_t x, char *s)
-{
-	unsigned i;
-
-	/* Make sure UMAX2S_BUFSIZE is large enough. */
-	assert(sizeof(uintmax_t) <= 8);
-
-	i = UMAX2S_BUFSIZE - 1;
-	s[i] = '\0';
-	do {
-		i--;
-		s[i] = "0123456789"[x % 10];
-		x /= 10;
-	} while (x > 0);
-
-	return (&s[i]);
-}
-
-/******************************************************************************/
-
-#ifdef MALLOC_DSS
-static bool
-base_pages_alloc_dss(size_t minsize)
-{
-
-	/*
-	 * Do special DSS allocation here, since base allocations don't need to
-	 * be chunk-aligned.
-	 */
-	malloc_mutex_lock(&dss_mtx);
-	if (dss_prev != (void *)-1) {
-		intptr_t incr;
-		size_t csize = CHUNK_CEILING(minsize);
-
-		do {
-			/* Get the current end of the DSS. */
-			dss_max = sbrk(0);
-
-			/*
-			 * Calculate how much padding is necessary to
-			 * chunk-align the end of the DSS.  Don't worry about
-			 * dss_max not being chunk-aligned though.
-			 */
-			incr = (intptr_t)chunksize
-			    - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
-			assert(incr >= 0);
-			if ((size_t)incr < minsize)
-				incr += csize;
-
-			dss_prev = sbrk(incr);
-			if (dss_prev == dss_max) {
-				/* Success. */
-				dss_max = (void *)((intptr_t)dss_prev + incr);
-				base_pages = dss_prev;
-				base_next_addr = base_pages;
-				base_past_addr = dss_max;
-#ifdef MALLOC_STATS
-				base_mapped += incr;
-#endif
-				malloc_mutex_unlock(&dss_mtx);
-				return (false);
-			}
-		} while (dss_prev != (void *)-1);
-	}
-	malloc_mutex_unlock(&dss_mtx);
-
-	return (true);
-}
-#endif
-
-static bool
-base_pages_alloc_mmap(size_t minsize)
-{
-	size_t csize;
-
-	assert(minsize != 0);
-	csize = PAGE_CEILING(minsize);
-	base_pages = pages_map(NULL, csize);
-	if (base_pages == NULL)
-		return (true);
-	base_next_addr = base_pages;
-	base_past_addr = (void *)((uintptr_t)base_pages + csize);
-#ifdef MALLOC_STATS
-	base_mapped += csize;
-#endif
-
-	return (false);
-}
-
-static bool
-base_pages_alloc(size_t minsize)
-{
-
-#ifdef MALLOC_DSS
-	if (opt_dss) {
-		if (base_pages_alloc_dss(minsize) == false)
-			return (false);
-	}
-
-	if (opt_mmap && minsize != 0)
-#endif
-	{
-		if (base_pages_alloc_mmap(minsize) == false)
-			return (false);
-	}
-
-	return (true);
-}
-
-static void *
-base_alloc(size_t size)
-{
-	void *ret;
-	size_t csize;
-
-	/* Round size up to nearest multiple of the cacheline size. */
-	csize = CACHELINE_CEILING(size);
-
-	malloc_mutex_lock(&base_mtx);
-	/* Make sure there's enough space for the allocation. */
-	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
-		if (base_pages_alloc(csize)) {
-			malloc_mutex_unlock(&base_mtx);
-			return (NULL);
-		}
-	}
-	/* Allocate. */
-	ret = base_next_addr;
-	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
-	malloc_mutex_unlock(&base_mtx);
-
-	return (ret);
-}
-
-static void *
-base_calloc(size_t number, size_t size)
-{
-	void *ret;
-
-	ret = base_alloc(number * size);
-	memset(ret, 0, number * size);
-
-	return (ret);
-}
-
-static extent_node_t *
-base_node_alloc(void)
-{
-	extent_node_t *ret;
-
-	malloc_mutex_lock(&base_mtx);
-	if (base_nodes != NULL) {
-		ret = base_nodes;
-		base_nodes = *(extent_node_t **)ret;
-		malloc_mutex_unlock(&base_mtx);
-	} else {
-		malloc_mutex_unlock(&base_mtx);
-		ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
-	}
-
-	return (ret);
-}
-
-static void
-base_node_dealloc(extent_node_t *node)
-{
-
-	malloc_mutex_lock(&base_mtx);
-	*(extent_node_t **)node = base_nodes;
-	base_nodes = node;
-	malloc_mutex_unlock(&base_mtx);
-}
-
-/******************************************************************************/
-
-#ifdef MALLOC_STATS
-static void
-stats_print(arena_t *arena)
-{
-	unsigned i, gap_start;
-
-	malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
-	    " %llu madvise%s, %llu page%s purged\n",
-	    arena->ndirty, arena->ndirty == 1 ? "" : "s",
-	    arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
-	    arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
-	    arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
-
-	malloc_printf("            allocated      nmalloc      ndalloc\n");
-	malloc_printf("small:   %12zu %12llu %12llu\n",
-	    arena->stats.allocated_small, arena->stats.nmalloc_small,
-	    arena->stats.ndalloc_small);
-	malloc_printf("large:   %12zu %12llu %12llu\n",
-	    arena->stats.allocated_large, arena->stats.nmalloc_large,
-	    arena->stats.ndalloc_large);
-	malloc_printf("total:   %12zu %12llu %12llu\n",
-	    arena->stats.allocated_small + arena->stats.allocated_large,
-	    arena->stats.nmalloc_small + arena->stats.nmalloc_large,
-	    arena->stats.ndalloc_small + arena->stats.ndalloc_large);
-	malloc_printf("mapped:  %12zu\n", arena->stats.mapped);
-
-#ifdef MALLOC_MAG
-	if (__isthreaded && opt_mag) {
-		malloc_printf("bins:     bin   size regs pgs      mags   "
-		    "newruns    reruns maxruns curruns\n");
-	} else {
-#endif
-		malloc_printf("bins:     bin   size regs pgs  requests   "
-		    "newruns    reruns maxruns curruns\n");
-#ifdef MALLOC_MAG
-	}
-#endif
-	for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
-		if (arena->bins[i].stats.nruns == 0) {
-			if (gap_start == UINT_MAX)
-				gap_start = i;
-		} else {
-			if (gap_start != UINT_MAX) {
-				if (i > gap_start + 1) {
-					/* Gap of more than one size class. */
-					malloc_printf("[%u..%u]\n",
-					    gap_start, i - 1);
-				} else {
-					/* Gap of one size class. */
-					malloc_printf("[%u]\n", gap_start);
-				}
-				gap_start = UINT_MAX;
-			}
-			malloc_printf(
-			    "%13u %1s %4u %4u %3u %9llu %9llu"
-			    " %9llu %7lu %7lu\n",
-			    i,
-			    i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
-			    i < ntbins + nqbins + ncbins ? "C" : "S",
-			    arena->bins[i].reg_size,
-			    arena->bins[i].nregs,
-			    arena->bins[i].run_size >> pagesize_2pow,
-#ifdef MALLOC_MAG
-			    (__isthreaded && opt_mag) ?
-			    arena->bins[i].stats.nmags :
-#endif
-			    arena->bins[i].stats.nrequests,
-			    arena->bins[i].stats.nruns,
-			    arena->bins[i].stats.reruns,
-			    arena->bins[i].stats.highruns,
-			    arena->bins[i].stats.curruns);
-		}
-	}
-	if (gap_start != UINT_MAX) {
-		if (i > gap_start + 1) {
-			/* Gap of more than one size class. */
-			malloc_printf("[%u..%u]\n", gap_start, i - 1);
-		} else {
-			/* Gap of one size class. */
-			malloc_printf("[%u]\n", gap_start);
-		}
-	}
-}
-#endif
-
-/*
- * End Utility functions/macros.
- */
-/******************************************************************************/
-/*
- * Begin extent tree code.
- */
-
-#ifdef MALLOC_DSS
-static inline int
-extent_szad_comp(extent_node_t *a, extent_node_t *b)
-{
-	int ret;
-	size_t a_size = a->size;
-	size_t b_size = b->size;
-
-	ret = (a_size > b_size) - (a_size < b_size);
-	if (ret == 0) {
-		uintptr_t a_addr = (uintptr_t)a->addr;
-		uintptr_t b_addr = (uintptr_t)b->addr;
-
-		ret = (a_addr > b_addr) - (a_addr < b_addr);
-	}
-
-	return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t,
-    link_szad, extent_szad_comp)
-#endif
-
-static inline int
-extent_ad_comp(extent_node_t *a, extent_node_t *b)
-{
-	uintptr_t a_addr = (uintptr_t)a->addr;
-	uintptr_t b_addr = (uintptr_t)b->addr;
-
-	return ((a_addr > b_addr) - (a_addr < b_addr));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
-    extent_ad_comp)
-
-/*
- * End extent tree code.
- */
-/******************************************************************************/
-/*
- * Begin chunk management functions.
- */
-
-static void *
-pages_map(void *addr, size_t size)
-{
-	void *ret;
-
-	/*
-	 * We don't use MAP_FIXED here, because it can cause the *replacement*
-	 * of existing mappings, and we only want to create new mappings.
-	 */
-	ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
-	    -1, 0);
-	assert(ret != NULL);
-
-	if (ret == MAP_FAILED)
-		ret = NULL;
-	else if (addr != NULL && ret != addr) {
-		/*
-		 * We succeeded in mapping memory, but not in the right place.
-		 */
-		if (munmap(ret, size) == -1) {
-			char buf[STRERROR_BUF];
-
-			strerror_r(errno, buf, sizeof(buf));
-			_malloc_message(_getprogname(),
-			    ": (malloc) Error in munmap(): ", buf, "\n");
-			if (opt_abort)
-				abort();
-		}
-		ret = NULL;
-	}
-
-	assert(ret == NULL || (addr == NULL && ret != addr)
-	    || (addr != NULL && ret == addr));
-	return (ret);
-}
-
-static void
-pages_unmap(void *addr, size_t size)
-{
-
-	if (munmap(addr, size) == -1) {
-		char buf[STRERROR_BUF];
-
-		strerror_r(errno, buf, sizeof(buf));
-		_malloc_message(_getprogname(),
-		    ": (malloc) Error in munmap(): ", buf, "\n");
-		if (opt_abort)
-			abort();
-	}
-}
-
-#ifdef MALLOC_DSS
-static void *
-chunk_alloc_dss(size_t size)
-{
-
-	/*
-	 * sbrk() uses a signed increment argument, so take care not to
-	 * interpret a huge allocation request as a negative increment.
-	 */
-	if ((intptr_t)size < 0)
-		return (NULL);
-
-	malloc_mutex_lock(&dss_mtx);
-	if (dss_prev != (void *)-1) {
-		intptr_t incr;
-
-		/*
-		 * The loop is necessary to recover from races with other
-		 * threads that are using the DSS for something other than
-		 * malloc.
-		 */
-		do {
-			void *ret;
-
-			/* Get the current end of the DSS. */
-			dss_max = sbrk(0);
-
-			/*
-			 * Calculate how much padding is necessary to
-			 * chunk-align the end of the DSS.
-			 */
-			incr = (intptr_t)size
-			    - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
-			if (incr == (intptr_t)size)
-				ret = dss_max;
-			else {
-				ret = (void *)((intptr_t)dss_max + incr);
-				incr += size;
-			}
-
-			dss_prev = sbrk(incr);
-			if (dss_prev == dss_max) {
-				/* Success. */
-				dss_max = (void *)((intptr_t)dss_prev + incr);
-				malloc_mutex_unlock(&dss_mtx);
-				return (ret);
-			}
-		} while (dss_prev != (void *)-1);
-	}
-	malloc_mutex_unlock(&dss_mtx);
-
-	return (NULL);
-}
-
-static void *
-chunk_recycle_dss(size_t size, bool zero)
-{
-	extent_node_t *node, key;
-
-	key.addr = NULL;
-	key.size = size;
-	malloc_mutex_lock(&dss_mtx);
-	node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
-	if (node != NULL) {
-		void *ret = node->addr;
-
-		/* Remove node from the tree. */
-		extent_tree_szad_remove(&dss_chunks_szad, node);
-		if (node->size == size) {
-			extent_tree_ad_remove(&dss_chunks_ad, node);
-			base_node_dealloc(node);
-		} else {
-			/*
-			 * Insert the remainder of node's address range as a
-			 * smaller chunk.  Its position within dss_chunks_ad
-			 * does not change.
-			 */
-			assert(node->size > size);
-			node->addr = (void *)((uintptr_t)node->addr + size);
-			node->size -= size;
-			extent_tree_szad_insert(&dss_chunks_szad, node);
-		}
-		malloc_mutex_unlock(&dss_mtx);
-
-		if (zero)
-			memset(ret, 0, size);
-		return (ret);
-	}
-	malloc_mutex_unlock(&dss_mtx);
-
-	return (NULL);
-}
-#endif
-
-static void *
-chunk_alloc_mmap(size_t size)
-{
-	void *ret;
-	size_t offset;
-
-	/*
-	 * Ideally, there would be a way to specify alignment to mmap() (like
-	 * NetBSD has), but in the absence of such a feature, we have to work
-	 * hard to efficiently create aligned mappings.  The reliable, but
-	 * expensive method is to create a mapping that is over-sized, then
-	 * trim the excess.  However, that always results in at least one call
-	 * to pages_unmap().
-	 *
-	 * A more optimistic approach is to try mapping precisely the right
-	 * amount, then try to append another mapping if alignment is off.  In
-	 * practice, this works out well as long as the application is not
-	 * interleaving mappings via direct mmap() calls.  If we do run into a
-	 * situation where there is an interleaved mapping and we are unable to
-	 * extend an unaligned mapping, our best option is to momentarily
-	 * revert to the reliable-but-expensive method.  This will tend to
-	 * leave a gap in the memory map that is too small to cause later
-	 * problems for the optimistic method.
-	 */
-
-	ret = pages_map(NULL, size);
-	if (ret == NULL)
-		return (NULL);
-
-	offset = CHUNK_ADDR2OFFSET(ret);
-	if (offset != 0) {
-		/* Try to extend chunk boundary. */
-		if (pages_map((void *)((uintptr_t)ret + size),
-		    chunksize - offset) == NULL) {
-			/*
-			 * Extension failed.  Clean up, then revert to the
-			 * reliable-but-expensive method.
-			 */
-			pages_unmap(ret, size);
-
-			/* Beware size_t wrap-around. */
-			if (size + chunksize <= size)
-				return NULL;
-
-			ret = pages_map(NULL, size + chunksize);
-			if (ret == NULL)
-				return (NULL);
-
-			/* Clean up unneeded leading/trailing space. */
-			offset = CHUNK_ADDR2OFFSET(ret);
-			if (offset != 0) {
-				/* Leading space. */
-				pages_unmap(ret, chunksize - offset);
-
-				ret = (void *)((uintptr_t)ret +
-				    (chunksize - offset));
-
-				/* Trailing space. */
-				pages_unmap((void *)((uintptr_t)ret + size),
-				    offset);
-			} else {
-				/* Trailing space only. */
-				pages_unmap((void *)((uintptr_t)ret + size),
-				    chunksize);
-			}
-		} else {
-			/* Clean up unneeded leading space. */
-			pages_unmap(ret, chunksize - offset);
-			ret = (void *)((uintptr_t)ret + (chunksize - offset));
-		}
-	}
-
-	return (ret);
-}
-
-static void *
-chunk_alloc(size_t size, bool zero)
-{
-	void *ret;
-
-	assert(size != 0);
-	assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_DSS
-	if (opt_dss) {
-		ret = chunk_recycle_dss(size, zero);
-		if (ret != NULL) {
-			goto RETURN;
-		}
-
-		ret = chunk_alloc_dss(size);
-		if (ret != NULL)
-			goto RETURN;
-	}
-
-	if (opt_mmap)
-#endif
-	{
-		ret = chunk_alloc_mmap(size);
-		if (ret != NULL)
-			goto RETURN;
-	}
-
-	/* All strategies for allocation failed. */
-	ret = NULL;
-RETURN:
-#ifdef MALLOC_STATS
-	if (ret != NULL) {
-		stats_chunks.nchunks += (size / chunksize);
-		stats_chunks.curchunks += (size / chunksize);
-	}
-	if (stats_chunks.curchunks > stats_chunks.highchunks)
-		stats_chunks.highchunks = stats_chunks.curchunks;
-#endif
-
-	assert(CHUNK_ADDR2BASE(ret) == ret);
-	return (ret);
-}
-
-#ifdef MALLOC_DSS
-static extent_node_t *
-chunk_dealloc_dss_record(void *chunk, size_t size)
-{
-	extent_node_t *node, *prev, key;
-
-	key.addr = (void *)((uintptr_t)chunk + size);
-	node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
-	/* Try to coalesce forward. */
-	if (node != NULL && node->addr == key.addr) {
-		/*
-		 * Coalesce chunk with the following address range.  This does
-		 * not change the position within dss_chunks_ad, so only
-		 * remove/insert from/into dss_chunks_szad.
-		 */
-		extent_tree_szad_remove(&dss_chunks_szad, node);
-		node->addr = chunk;
-		node->size += size;
-		extent_tree_szad_insert(&dss_chunks_szad, node);
-	} else {
-		/*
-		 * Coalescing forward failed, so insert a new node.  Drop
-		 * dss_mtx during node allocation, since it is possible that a
-		 * new base chunk will be allocated.
-		 */
-		malloc_mutex_unlock(&dss_mtx);
-		node = base_node_alloc();
-		malloc_mutex_lock(&dss_mtx);
-		if (node == NULL)
-			return (NULL);
-		node->addr = chunk;
-		node->size = size;
-		extent_tree_ad_insert(&dss_chunks_ad, node);
-		extent_tree_szad_insert(&dss_chunks_szad, node);
-	}
-
-	/* Try to coalesce backward. */
-	prev = extent_tree_ad_prev(&dss_chunks_ad, node);
-	if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
-	    chunk) {
-		/*
-		 * Coalesce chunk with the previous address range.  This does
-		 * not change the position within dss_chunks_ad, so only
-		 * remove/insert node from/into dss_chunks_szad.
-		 */
-		extent_tree_szad_remove(&dss_chunks_szad, prev);
-		extent_tree_ad_remove(&dss_chunks_ad, prev);
-
-		extent_tree_szad_remove(&dss_chunks_szad, node);
-		node->addr = prev->addr;
-		node->size += prev->size;
-		extent_tree_szad_insert(&dss_chunks_szad, node);
-
-		base_node_dealloc(prev);
-	}
-
-	return (node);
-}
-
-static bool
-chunk_dealloc_dss(void *chunk, size_t size)
-{
-
-	malloc_mutex_lock(&dss_mtx);
-	if ((uintptr_t)chunk >= (uintptr_t)dss_base
-	    && (uintptr_t)chunk < (uintptr_t)dss_max) {
-		extent_node_t *node;
-
-		/* Try to coalesce with other unused chunks. */
-		node = chunk_dealloc_dss_record(chunk, size);
-		if (node != NULL) {
-			chunk = node->addr;
-			size = node->size;
-		}
-
-		/* Get the current end of the DSS. */
-		dss_max = sbrk(0);
-
-		/*
-		 * Try to shrink the DSS if this chunk is at the end of the
-		 * DSS.  The sbrk() call here is subject to a race condition
-		 * with threads that use brk(2) or sbrk(2) directly, but the
-		 * alternative would be to leak memory for the sake of poorly
-		 * designed multi-threaded programs.
-		 */
-		if ((void *)((uintptr_t)chunk + size) == dss_max
-		    && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
-			/* Success. */
-			dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
-
-			if (node != NULL) {
-				extent_tree_szad_remove(&dss_chunks_szad, node);
-				extent_tree_ad_remove(&dss_chunks_ad, node);
-				base_node_dealloc(node);
-			}
-			malloc_mutex_unlock(&dss_mtx);
-		} else {
-			malloc_mutex_unlock(&dss_mtx);
-			madvise(chunk, size, MADV_FREE);
-		}
-
-		return (false);
-	}
-	malloc_mutex_unlock(&dss_mtx);
-
-	return (true);
-}
-#endif
-
-static void
-chunk_dealloc_mmap(void *chunk, size_t size)
-{
-
-	pages_unmap(chunk, size);
-}
-
-static void
-chunk_dealloc(void *chunk, size_t size)
-{
-
-	assert(chunk != NULL);
-	assert(CHUNK_ADDR2BASE(chunk) == chunk);
-	assert(size != 0);
-	assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_STATS
-	stats_chunks.curchunks -= (size / chunksize);
-#endif
-
-#ifdef MALLOC_DSS
-	if (opt_dss) {
-		if (chunk_dealloc_dss(chunk, size) == false)
-			return;
-	}
-
-	if (opt_mmap)
-#endif
-		chunk_dealloc_mmap(chunk, size);
-}
-
-/*
- * End chunk management functions.
- */
-/******************************************************************************/
-/*
- * Begin arena.
- */
-
-/*
- * Choose an arena based on a per-thread value (fast-path code, calls slow-path
- * code if necessary).
- */
-static inline arena_t *
-choose_arena(void)
-{
-	arena_t *ret;
-
-	/*
-	 * We can only use TLS if this is a PIC library, since for the static
-	 * library version, libc's malloc is used by TLS allocation, which
-	 * introduces a bootstrapping issue.
-	 */
-#ifndef NO_TLS
-	if (__isthreaded == false) {
-	    /* Avoid the overhead of TLS for single-threaded operation. */
-	    return (arenas[0]);
-	}
-
-	ret = arenas_map;
-	if (ret == NULL) {
-		ret = choose_arena_hard();
-		assert(ret != NULL);
-	}
-#else
-	if (__isthreaded && narenas > 1) {
-		unsigned long ind;
-
-		/*
-		 * Hash _pthread_self() to one of the arenas.  There is a prime
-		 * number of arenas, so this has a reasonable chance of
-		 * working.  Even so, the hashing can be easily thwarted by
-		 * inconvenient _pthread_self() values.  Without specific
-		 * knowledge of how _pthread_self() calculates values, we can't
-		 * easily do much better than this.
-		 */
-		ind = (unsigned long) _pthread_self() % narenas;
-
-		/*
-		 * Optimistially assume that arenas[ind] has been initialized.
-		 * At worst, we find out that some other thread has already
-		 * done so, after acquiring the lock in preparation.  Note that
-		 * this lazy locking also has the effect of lazily forcing
-		 * cache coherency; without the lock acquisition, there's no
-		 * guarantee that modification of arenas[ind] by another thread
-		 * would be seen on this CPU for an arbitrary amount of time.
-		 *
-		 * In general, this approach to modifying a synchronized value
-		 * isn't a good idea, but in this case we only ever modify the
-		 * value once, so things work out well.
-		 */
-		ret = arenas[ind];
-		if (ret == NULL) {
-			/*
-			 * Avoid races with another thread that may have already
-			 * initialized arenas[ind].
-			 */
-			malloc_spin_lock(&arenas_lock);
-			if (arenas[ind] == NULL)
-				ret = arenas_extend((unsigned)ind);
-			else
-				ret = arenas[ind];
-			malloc_spin_unlock(&arenas_lock);
-		}
-	} else
-		ret = arenas[0];
-#endif
-
-	assert(ret != NULL);
-	return (ret);
-}
-
-#ifndef NO_TLS
-/*
- * Choose an arena based on a per-thread value (slow-path code only, called
- * only by choose_arena()).
- */
-static arena_t *
-choose_arena_hard(void)
-{
-	arena_t *ret;
-
-	assert(__isthreaded);
-
-#ifdef MALLOC_BALANCE
-	/* Seed the PRNG used for arena load balancing. */
-	SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
-#endif
-
-	if (narenas > 1) {
-#ifdef MALLOC_BALANCE
-		unsigned ind;
-
-		ind = PRN(balance, narenas_2pow);
-		if ((ret = arenas[ind]) == NULL) {
-			malloc_spin_lock(&arenas_lock);
-			if ((ret = arenas[ind]) == NULL)
-				ret = arenas_extend(ind);
-			malloc_spin_unlock(&arenas_lock);
-		}
-#else
-		malloc_spin_lock(&arenas_lock);
-		if ((ret = arenas[next_arena]) == NULL)
-			ret = arenas_extend(next_arena);
-		next_arena = (next_arena + 1) % narenas;
-		malloc_spin_unlock(&arenas_lock);
-#endif
-	} else
-		ret = arenas[0];
-
-	arenas_map = ret;
-
-	return (ret);
-}
-#endif
-
-static inline int
-arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
-{
-	uintptr_t a_chunk = (uintptr_t)a;
-	uintptr_t b_chunk = (uintptr_t)b;
-
-	assert(a != NULL);
-	assert(b != NULL);
-
-	return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
-    arena_chunk_t, link_dirty, arena_chunk_comp)
-
-static inline int
-arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
-	uintptr_t a_mapelm = (uintptr_t)a;
-	uintptr_t b_mapelm = (uintptr_t)b;
-
-	assert(a != NULL);
-	assert(b != NULL);
-
-	return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
-    link, arena_run_comp)
-
-static inline int
-arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
-	int ret;
-	size_t a_size = a->bits & ~pagesize_mask;
-	size_t b_size = b->bits & ~pagesize_mask;
-
-	ret = (a_size > b_size) - (a_size < b_size);
-	if (ret == 0) {
-		uintptr_t a_mapelm, b_mapelm;
-
-		if ((a->bits & CHUNK_MAP_KEY) == 0)
-			a_mapelm = (uintptr_t)a;
-		else {
-			/*
-			 * Treat keys as though they are lower than anything
-			 * else.
-			 */
-			a_mapelm = 0;
-		}
-		b_mapelm = (uintptr_t)b;
-
-		ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
-	}
-
-	return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, arena_avail_tree_, arena_avail_tree_t,
-    arena_chunk_map_t, link, arena_avail_comp)
-
-static inline void *
-arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
-{
-	void *ret;
-	unsigned i, mask, bit, regind;
-
-	assert(run->magic == ARENA_RUN_MAGIC);
-	assert(run->regs_minelm < bin->regs_mask_nelms);
-
-	/*
-	 * Move the first check outside the loop, so that run->regs_minelm can
-	 * be updated unconditionally, without the possibility of updating it
-	 * multiple times.
-	 */
-	i = run->regs_minelm;
-	mask = run->regs_mask[i];
-	if (mask != 0) {
-		/* Usable allocation found. */
-		bit = ffs((int)mask) - 1;
-
-		regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
-		assert(regind < bin->nregs);
-		ret = (void *)(((uintptr_t)run) + bin->reg0_offset
-		    + (bin->reg_size * regind));
-
-		/* Clear bit. */
-		mask ^= (1U << bit);
-		run->regs_mask[i] = mask;
-
-		return (ret);
-	}
-
-	for (i++; i < bin->regs_mask_nelms; i++) {
-		mask = run->regs_mask[i];
-		if (mask != 0) {
-			/* Usable allocation found. */
-			bit = ffs((int)mask) - 1;
-
-			regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
-			assert(regind < bin->nregs);
-			ret = (void *)(((uintptr_t)run) + bin->reg0_offset
-			    + (bin->reg_size * regind));
-
-			/* Clear bit. */
-			mask ^= (1U << bit);
-			run->regs_mask[i] = mask;
-
-			/*
-			 * Make a note that nothing before this element
-			 * contains a free region.
-			 */
-			run->regs_minelm = i; /* Low payoff: + (mask == 0); */
-
-			return (ret);
-		}
-	}
-	/* Not reached. */
-	assert(0);
-	return (NULL);
-}
-
-static inline void
-arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
-{
-	unsigned diff, regind, elm, bit;
-
-	assert(run->magic == ARENA_RUN_MAGIC);
-
-	/*
-	 * Avoid doing division with a variable divisor if possible.  Using
-	 * actual division here can reduce allocator throughput by over 20%!
-	 */
-	diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
-	if ((size & (size - 1)) == 0) {
-		/*
-		 * log2_table allows fast division of a power of two in the
-		 * [1..128] range.
-		 *
-		 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
-		 */
-		static const unsigned char log2_table[] = {
-		    0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
-		};
-
-		if (size <= 128)
-			regind = (diff >> log2_table[size - 1]);
-		else if (size <= 32768)
-			regind = diff >> (8 + log2_table[(size >> 8) - 1]);
-		else
-			regind = diff / size;
-	} else if (size < qspace_max) {
-		/*
-		 * To divide by a number D that is not a power of two we
-		 * multiply by (2^21 / D) and then right shift by 21 positions.
-		 *
-		 *   X / D
-		 *
-		 * becomes
-		 *
-		 *   (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
-		 *       >> SIZE_INV_SHIFT
-		 *
-		 * We can omit the first three elements, because we never
-		 * divide by 0, and QUANTUM and 2*QUANTUM are both powers of
-		 * two, which are handled above.
-		 */
-#define	SIZE_INV_SHIFT 21
-#define	QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
-		static const unsigned qsize_invs[] = {
-		    QSIZE_INV(3),
-		    QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
-#if (QUANTUM_2POW < 4)
-		    ,
-		    QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
-		    QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
-#endif
-		};
-		assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
-		    >= (1U << QSPACE_MAX_2POW_DEFAULT));
-
-		if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
-		    QUANTUM_2POW)) {
-			regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
-			regind >>= SIZE_INV_SHIFT;
-		} else
-			regind = diff / size;
-#undef QSIZE_INV
-	} else if (size < cspace_max) {
-#define	CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
-		static const unsigned csize_invs[] = {
-		    CSIZE_INV(3),
-		    CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
-		};
-		assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
-		    3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
-
-		if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
-		    CACHELINE_2POW)) {
-			regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
-			    diff;
-			regind >>= SIZE_INV_SHIFT;
-		} else
-			regind = diff / size;
-#undef CSIZE_INV
-	} else {
-#define	SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
-		static const unsigned ssize_invs[] = {
-		    SSIZE_INV(3),
-		    SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
-		    SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
-		    SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
-#if (PAGESIZE_2POW == 13)
-		    ,
-		    SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
-		    SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
-		    SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
-		    SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
-#endif
-		};
-		assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
-		    >= (1U << PAGESIZE_2POW));
-
-		if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
-		    SUBPAGE_2POW)) {
-			regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
-			regind >>= SIZE_INV_SHIFT;
-		} else
-			regind = diff / size;
-#undef SSIZE_INV
-	}
-#undef SIZE_INV_SHIFT
-	assert(diff == regind * size);
-	assert(regind < bin->nregs);
-
-	elm = regind >> (SIZEOF_INT_2POW + 3);
-	if (elm < run->regs_minelm)
-		run->regs_minelm = elm;
-	bit = regind - (elm << (SIZEOF_INT_2POW + 3));
-	assert((run->regs_mask[elm] & (1U << bit)) == 0);
-	run->regs_mask[elm] |= (1U << bit);
-}
-
-static void
-arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
-    bool zero)
-{
-	arena_chunk_t *chunk;
-	size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
-	old_ndirty = chunk->ndirty;
-	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
-	    >> pagesize_2pow);
-	total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
-	    pagesize_2pow;
-	need_pages = (size >> pagesize_2pow);
-	assert(need_pages > 0);
-	assert(need_pages <= total_pages);
-	rem_pages = total_pages - need_pages;
-
-	arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
-
-	/* Keep track of trailing unused pages for later use. */
-	if (rem_pages > 0) {
-		chunk->map[run_ind+need_pages].bits = (rem_pages <<
-		    pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
-		    pagesize_mask);
-		chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
-		    pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
-		    pagesize_mask);
-		arena_avail_tree_insert(&arena->runs_avail,
-		    &chunk->map[run_ind+need_pages]);
-	}
-
-	for (i = 0; i < need_pages; i++) {
-		/* Zero if necessary. */
-		if (zero) {
-			if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
-			    == 0) {
-				memset((void *)((uintptr_t)chunk + ((run_ind
-				    + i) << pagesize_2pow)), 0, pagesize);
-				/* CHUNK_MAP_ZEROED is cleared below. */
-			}
-		}
-
-		/* Update dirty page accounting. */
-		if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
-			chunk->ndirty--;
-			arena->ndirty--;
-			/* CHUNK_MAP_DIRTY is cleared below. */
-		}
-
-		/* Initialize the chunk map. */
-		if (large) {
-			chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
-			    | CHUNK_MAP_ALLOCATED;
-		} else {
-			chunk->map[run_ind + i].bits = (size_t)run
-			    | CHUNK_MAP_ALLOCATED;
-		}
-	}
-
-	/*
-	 * Set the run size only in the first element for large runs.  This is
-	 * primarily a debugging aid, since the lack of size info for trailing
-	 * pages only matters if the application tries to operate on an
-	 * interior pointer.
-	 */
-	if (large)
-		chunk->map[run_ind].bits |= size;
-
-	if (chunk->ndirty == 0 && old_ndirty > 0)
-		arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
-}
-
-static arena_chunk_t *
-arena_chunk_alloc(arena_t *arena)
-{
-	arena_chunk_t *chunk;
-	size_t i;
-
-	if (arena->spare != NULL) {
-		chunk = arena->spare;
-		arena->spare = NULL;
-	} else {
-		chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
-		if (chunk == NULL)
-			return (NULL);
-#ifdef MALLOC_STATS
-		arena->stats.mapped += chunksize;
-#endif
-
-		chunk->arena = arena;
-
-		/*
-		 * Claim that no pages are in use, since the header is merely
-		 * overhead.
-		 */
-		chunk->ndirty = 0;
-
-		/*
-		 * Initialize the map to contain one maximal free untouched run.
-		 */
-		for (i = 0; i < arena_chunk_header_npages; i++)
-			chunk->map[i].bits = 0;
-		chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
-		for (i++; i < chunk_npages-1; i++) {
-			chunk->map[i].bits = CHUNK_MAP_ZEROED;
-		}
-		chunk->map[chunk_npages-1].bits = arena_maxclass |
-		    CHUNK_MAP_ZEROED;
-	}
-
-	/* Insert the run into the runs_avail tree. */
-	arena_avail_tree_insert(&arena->runs_avail,
-	    &chunk->map[arena_chunk_header_npages]);
-
-	return (chunk);
-}
-
-static void
-arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
-{
-
-	if (arena->spare != NULL) {
-		if (arena->spare->ndirty > 0) {
-			arena_chunk_tree_dirty_remove(
-			    &chunk->arena->chunks_dirty, arena->spare);
-			arena->ndirty -= arena->spare->ndirty;
-		}
-		chunk_dealloc((void *)arena->spare, chunksize);
-#ifdef MALLOC_STATS
-		arena->stats.mapped -= chunksize;
-#endif
-	}
-
-	/*
-	 * Remove run from runs_avail, regardless of whether this chunk
-	 * will be cached, so that the arena does not use it.  Dirty page
-	 * flushing only uses the chunks_dirty tree, so leaving this chunk in
-	 * the chunks_* trees is sufficient for that purpose.
-	 */
-	arena_avail_tree_remove(&arena->runs_avail,
-	    &chunk->map[arena_chunk_header_npages]);
-
-	arena->spare = chunk;
-}
-
-static arena_run_t *
-arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
-{
-	arena_chunk_t *chunk;
-	arena_run_t *run;
-	arena_chunk_map_t *mapelm, key;
-
-	assert(size <= arena_maxclass);
-	assert((size & pagesize_mask) == 0);
-
-	/* Search the arena's chunks for the lowest best fit. */
-	key.bits = size | CHUNK_MAP_KEY;
-	mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
-	if (mapelm != NULL) {
-		arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
-		size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
-		    / sizeof(arena_chunk_map_t);
-
-		run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
-		    << pagesize_2pow));
-		arena_run_split(arena, run, size, large, zero);
-		return (run);
-	}
-
-	/*
-	 * No usable runs.  Create a new chunk from which to allocate the run.
-	 */
-	chunk = arena_chunk_alloc(arena);
-	if (chunk == NULL)
-		return (NULL);
-	run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
-	    pagesize_2pow));
-	/* Update page map. */
-	arena_run_split(arena, run, size, large, zero);
-	return (run);
-}
-
-static void
-arena_purge(arena_t *arena)
-{
-	arena_chunk_t *chunk;
-	size_t i, npages;
-#ifdef MALLOC_DEBUG
-	size_t ndirty = 0;
-
-	rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
-	    chunk) {
-		ndirty += chunk->ndirty;
-	} rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
-	assert(ndirty == arena->ndirty);
-#endif
-	assert(arena->ndirty > opt_dirty_max);
-
-#ifdef MALLOC_STATS
-	arena->stats.npurge++;
-#endif
-
-	/*
-	 * Iterate downward through chunks until enough dirty memory has been
-	 * purged.  Terminate as soon as possible in order to minimize the
-	 * number of system calls, even if a chunk has only been partially
-	 * purged.
-	 */
-	while (arena->ndirty > (opt_dirty_max >> 1)) {
-		chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
-		assert(chunk != NULL);
-
-		for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
-			assert(i >= arena_chunk_header_npages);
-
-			if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
-				chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
-				/* Find adjacent dirty run(s). */
-				for (npages = 1; i > arena_chunk_header_npages
-				    && (chunk->map[i - 1].bits &
-				    CHUNK_MAP_DIRTY); npages++) {
-					i--;
-					chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
-				}
-				chunk->ndirty -= npages;
-				arena->ndirty -= npages;
-
-				madvise((void *)((uintptr_t)chunk + (i <<
-				    pagesize_2pow)), (npages << pagesize_2pow),
-				    MADV_FREE);
-#ifdef MALLOC_STATS
-				arena->stats.nmadvise++;
-				arena->stats.purged += npages;
-#endif
-				if (arena->ndirty <= (opt_dirty_max >> 1))
-					break;
-			}
-		}
-
-		if (chunk->ndirty == 0) {
-			arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
-			    chunk);
-		}
-	}
-}
-
-static void
-arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
-{
-	arena_chunk_t *chunk;
-	size_t size, run_ind, run_pages;
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
-	run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
-	    >> pagesize_2pow);
-	assert(run_ind >= arena_chunk_header_npages);
-	assert(run_ind < chunk_npages);
-	if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
-		size = chunk->map[run_ind].bits & ~pagesize_mask;
-	else
-		size = run->bin->run_size;
-	run_pages = (size >> pagesize_2pow);
-
-	/* Mark pages as unallocated in the chunk map. */
-	if (dirty) {
-		size_t i;
-
-		for (i = 0; i < run_pages; i++) {
-			assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
-			    == 0);
-			chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
-		}
-
-		if (chunk->ndirty == 0) {
-			arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
-			    chunk);
-		}
-		chunk->ndirty += run_pages;
-		arena->ndirty += run_pages;
-	} else {
-		size_t i;
-
-		for (i = 0; i < run_pages; i++) {
-			chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
-			    CHUNK_MAP_ALLOCATED);
-		}
-	}
-	chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
-	    pagesize_mask);
-	chunk->map[run_ind+run_pages-1].bits = size |
-	    (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-
-	/* Try to coalesce forward. */
-	if (run_ind + run_pages < chunk_npages &&
-	    (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
-		size_t nrun_size = chunk->map[run_ind+run_pages].bits &
-		    ~pagesize_mask;
-
-		/*
-		 * Remove successor from runs_avail; the coalesced run is
-		 * inserted later.
-		 */
-		arena_avail_tree_remove(&arena->runs_avail,
-		    &chunk->map[run_ind+run_pages]);
-
-		size += nrun_size;
-		run_pages = size >> pagesize_2pow;
-
-		assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
-		    == nrun_size);
-		chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
-		    pagesize_mask);
-		chunk->map[run_ind+run_pages-1].bits = size |
-		    (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-	}
-
-	/* Try to coalesce backward. */
-	if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
-	    CHUNK_MAP_ALLOCATED) == 0) {
-		size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
-
-		run_ind -= prun_size >> pagesize_2pow;
-
-		/*
-		 * Remove predecessor from runs_avail; the coalesced run is
-		 * inserted later.
-		 */
-		arena_avail_tree_remove(&arena->runs_avail,
-		    &chunk->map[run_ind]);
-
-		size += prun_size;
-		run_pages = size >> pagesize_2pow;
-
-		assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
-		    prun_size);
-		chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
-		    pagesize_mask);
-		chunk->map[run_ind+run_pages-1].bits = size |
-		    (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-	}
-
-	/* Insert into runs_avail, now that coalescing is complete. */
-	arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
-
-	/* Deallocate chunk if it is now completely unused. */
-	if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
-	    CHUNK_MAP_ALLOCATED)) == arena_maxclass)
-		arena_chunk_dealloc(arena, chunk);
-
-	/* Enforce opt_dirty_max. */
-	if (arena->ndirty > opt_dirty_max)
-		arena_purge(arena);
-}
-
-static void
-arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
-    size_t oldsize, size_t newsize)
-{
-	size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
-	size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
-
-	assert(oldsize > newsize);
-
-	/*
-	 * Update the chunk map so that arena_run_dalloc() can treat the
-	 * leading run as separately allocated.
-	 */
-	chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
-	    CHUNK_MAP_ALLOCATED;
-	chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
-	    CHUNK_MAP_ALLOCATED;
-
-	arena_run_dalloc(arena, run, false);
-}
-
-static void
-arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
-    size_t oldsize, size_t newsize, bool dirty)
-{
-	size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
-	size_t npages = newsize >> pagesize_2pow;
-
-	assert(oldsize > newsize);
-
-	/*
-	 * Update the chunk map so that arena_run_dalloc() can treat the
-	 * trailing run as separately allocated.
-	 */
-	chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
-	    CHUNK_MAP_ALLOCATED;
-	chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
-	    | CHUNK_MAP_ALLOCATED;
-
-	arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
-	    dirty);
-}
-
-static arena_run_t *
-arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
-{
-	arena_chunk_map_t *mapelm;
-	arena_run_t *run;
-	unsigned i, remainder;
-
-	/* Look for a usable run. */
-	mapelm = arena_run_tree_first(&bin->runs);
-	if (mapelm != NULL) {
-		/* run is guaranteed to have available space. */
-		arena_run_tree_remove(&bin->runs, mapelm);
-		run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-#ifdef MALLOC_STATS
-		bin->stats.reruns++;
-#endif
-		return (run);
-	}
-	/* No existing runs have any space available. */
-
-	/* Allocate a new run. */
-	run = arena_run_alloc(arena, bin->run_size, false, false);
-	if (run == NULL)
-		return (NULL);
-
-	/* Initialize run internals. */
-	run->bin = bin;
-
-	for (i = 0; i < bin->regs_mask_nelms - 1; i++)
-		run->regs_mask[i] = UINT_MAX;
-	remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
-	if (remainder == 0)
-		run->regs_mask[i] = UINT_MAX;
-	else {
-		/* The last element has spare bits that need to be unset. */
-		run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
-		    - remainder));
-	}
-
-	run->regs_minelm = 0;
-
-	run->nfree = bin->nregs;
-#ifdef MALLOC_DEBUG
-	run->magic = ARENA_RUN_MAGIC;
-#endif
-
-#ifdef MALLOC_STATS
-	bin->stats.nruns++;
-	bin->stats.curruns++;
-	if (bin->stats.curruns > bin->stats.highruns)
-		bin->stats.highruns = bin->stats.curruns;
-#endif
-	return (run);
-}
-
-/* bin->runcur must have space available before this function is called. */
-static inline void *
-arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
-{
-	void *ret;
-
-	assert(run->magic == ARENA_RUN_MAGIC);
-	assert(run->nfree > 0);
-
-	ret = arena_run_reg_alloc(run, bin);
-	assert(ret != NULL);
-	run->nfree--;
-
-	return (ret);
-}
-
-/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
-static void *
-arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
-{
-
-	bin->runcur = arena_bin_nonfull_run_get(arena, bin);
-	if (bin->runcur == NULL)
-		return (NULL);
-	assert(bin->runcur->magic == ARENA_RUN_MAGIC);
-	assert(bin->runcur->nfree > 0);
-
-	return (arena_bin_malloc_easy(arena, bin, bin->runcur));
-}
-
-/*
- * Calculate bin->run_size such that it meets the following constraints:
- *
- *   *) bin->run_size >= min_run_size
- *   *) bin->run_size <= arena_maxclass
- *   *) bin->run_size <= RUN_MAX_SMALL
- *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
- *
- * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
- * also calculated here, since these settings are all interdependent.
- */
-static size_t
-arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
-{
-	size_t try_run_size, good_run_size;
-	unsigned good_nregs, good_mask_nelms, good_reg0_offset;
-	unsigned try_nregs, try_mask_nelms, try_reg0_offset;
-
-	assert(min_run_size >= pagesize);
-	assert(min_run_size <= arena_maxclass);
-	assert(min_run_size <= RUN_MAX_SMALL);
-
-	/*
-	 * Calculate known-valid settings before entering the run_size
-	 * expansion loop, so that the first part of the loop always copies
-	 * valid settings.
-	 *
-	 * The do..while loop iteratively reduces the number of regions until
-	 * the run header and the regions no longer overlap.  A closed formula
-	 * would be quite messy, since there is an interdependency between the
-	 * header's mask length and the number of regions.
-	 */
-	try_run_size = min_run_size;
-	try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
-	    + 1; /* Counter-act try_nregs-- in loop. */
-	do {
-		try_nregs--;
-		try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
-		    ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
-		try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
-	} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
-	    > try_reg0_offset);
-
-	/* run_size expansion loop. */
-	do {
-		/*
-		 * Copy valid settings before trying more aggressive settings.
-		 */
-		good_run_size = try_run_size;
-		good_nregs = try_nregs;
-		good_mask_nelms = try_mask_nelms;
-		good_reg0_offset = try_reg0_offset;
-
-		/* Try more aggressive settings. */
-		try_run_size += pagesize;
-		try_nregs = ((try_run_size - sizeof(arena_run_t)) /
-		    bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
-		do {
-			try_nregs--;
-			try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
-			    ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
-			    1 : 0);
-			try_reg0_offset = try_run_size - (try_nregs *
-			    bin->reg_size);
-		} while (sizeof(arena_run_t) + (sizeof(unsigned) *
-		    (try_mask_nelms - 1)) > try_reg0_offset);
-	} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
-	    && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
-	    && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
-
-	assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
-	    <= good_reg0_offset);
-	assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
-
-	/* Copy final settings. */
-	bin->run_size = good_run_size;
-	bin->nregs = good_nregs;
-	bin->regs_mask_nelms = good_mask_nelms;
-	bin->reg0_offset = good_reg0_offset;
-
-	return (good_run_size);
-}
-
-#ifdef MALLOC_BALANCE
-static inline void
-arena_lock_balance(arena_t *arena)
-{
-	unsigned contention;
-
-	contention = malloc_spin_lock(&arena->lock);
-	if (narenas > 1) {
-		/*
-		 * Calculate the exponentially averaged contention for this
-		 * arena.  Due to integer math always rounding down, this value
-		 * decays somewhat faster than normal.
-		 */
-		arena->contention = (((uint64_t)arena->contention
-		    * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
-		    + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
-		if (arena->contention >= opt_balance_threshold)
-			arena_lock_balance_hard(arena);
-	}
-}
-
-static void
-arena_lock_balance_hard(arena_t *arena)
-{
-	uint32_t ind;
-
-	arena->contention = 0;
-#ifdef MALLOC_STATS
-	arena->stats.nbalance++;
-#endif
-	ind = PRN(balance, narenas_2pow);
-	if (arenas[ind] != NULL)
-		arenas_map = arenas[ind];
-	else {
-		malloc_spin_lock(&arenas_lock);
-		if (arenas[ind] != NULL)
-			arenas_map = arenas[ind];
-		else
-			arenas_map = arenas_extend(ind);
-		malloc_spin_unlock(&arenas_lock);
-	}
-}
-#endif
-
-#ifdef MALLOC_MAG
-static inline void *
-mag_alloc(mag_t *mag)
-{
-
-	if (mag->nrounds == 0)
-		return (NULL);
-	mag->nrounds--;
-
-	return (mag->rounds[mag->nrounds]);
-}
-
-static void
-mag_load(mag_t *mag)
-{
-	arena_t *arena;
-	arena_bin_t *bin;
-	arena_run_t *run;
-	void *round;
-	size_t i;
-
-	arena = choose_arena();
-	bin = &arena->bins[mag->binind];
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	for (i = mag->nrounds; i < max_rounds; i++) {
-		if ((run = bin->runcur) != NULL && run->nfree > 0)
-			round = arena_bin_malloc_easy(arena, bin, run);
-		else
-			round = arena_bin_malloc_hard(arena, bin);
-		if (round == NULL)
-			break;
-		mag->rounds[i] = round;
-	}
-#ifdef MALLOC_STATS
-	bin->stats.nmags++;
-	arena->stats.nmalloc_small += (i - mag->nrounds);
-	arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-	mag->nrounds = i;
-}
-
-static inline void *
-mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
-{
-	void *ret;
-	bin_mags_t *bin_mags;
-	mag_t *mag;
-	size_t binind;
-
-	binind = size2bin[size];
-	assert(binind < nbins);
-	bin_mags = &rack->bin_mags[binind];
-
-	mag = bin_mags->curmag;
-	if (mag == NULL) {
-		/* Create an initial magazine for this size class. */
-		assert(bin_mags->sparemag == NULL);
-		mag = mag_create(choose_arena(), binind);
-		if (mag == NULL)
-			return (NULL);
-		bin_mags->curmag = mag;
-		mag_load(mag);
-	}
-
-	ret = mag_alloc(mag);
-	if (ret == NULL) {
-		if (bin_mags->sparemag != NULL) {
-			if (bin_mags->sparemag->nrounds > 0) {
-				/* Swap magazines. */
-				bin_mags->curmag = bin_mags->sparemag;
-				bin_mags->sparemag = mag;
-				mag = bin_mags->curmag;
-			} else {
-				/* Reload the current magazine. */
-				mag_load(mag);
-			}
-		} else {
-			/* Create a second magazine. */
-			mag = mag_create(choose_arena(), binind);
-			if (mag == NULL)
-				return (NULL);
-			mag_load(mag);
-			bin_mags->sparemag = bin_mags->curmag;
-			bin_mags->curmag = mag;
-		}
-		ret = mag_alloc(mag);
-		if (ret == NULL)
-			return (NULL);
-	}
-
-	if (zero == false) {
-		if (opt_junk)
-			memset(ret, 0xa5, size);
-		else if (opt_zero)
-			memset(ret, 0, size);
-	} else
-		memset(ret, 0, size);
-
-	return (ret);
-}
-#endif
-
-static inline void *
-arena_malloc_small(arena_t *arena, size_t size, bool zero)
-{
-	void *ret;
-	arena_bin_t *bin;
-	arena_run_t *run;
-	size_t binind;
-
-	binind = size2bin[size];
-	assert(binind < nbins);
-	bin = &arena->bins[binind];
-	size = bin->reg_size;
-
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	if ((run = bin->runcur) != NULL && run->nfree > 0)
-		ret = arena_bin_malloc_easy(arena, bin, run);
-	else
-		ret = arena_bin_malloc_hard(arena, bin);
-
-	if (ret == NULL) {
-		malloc_spin_unlock(&arena->lock);
-		return (NULL);
-	}
-
-#ifdef MALLOC_STATS
-	bin->stats.nrequests++;
-	arena->stats.nmalloc_small++;
-	arena->stats.allocated_small += size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-
-	if (zero == false) {
-		if (opt_junk)
-			memset(ret, 0xa5, size);
-		else if (opt_zero)
-			memset(ret, 0, size);
-	} else
-		memset(ret, 0, size);
-
-	return (ret);
-}
-
-static void *
-arena_malloc_large(arena_t *arena, size_t size, bool zero)
-{
-	void *ret;
-
-	/* Large allocation. */
-	size = PAGE_CEILING(size);
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	ret = (void *)arena_run_alloc(arena, size, true, zero);
-	if (ret == NULL) {
-		malloc_spin_unlock(&arena->lock);
-		return (NULL);
-	}
-#ifdef MALLOC_STATS
-	arena->stats.nmalloc_large++;
-	arena->stats.allocated_large += size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-
-	if (zero == false) {
-		if (opt_junk)
-			memset(ret, 0xa5, size);
-		else if (opt_zero)
-			memset(ret, 0, size);
-	}
-
-	return (ret);
-}
-
-static inline void *
-arena_malloc(arena_t *arena, size_t size, bool zero)
-{
-
-	assert(arena != NULL);
-	assert(arena->magic == ARENA_MAGIC);
-	assert(size != 0);
-	assert(QUANTUM_CEILING(size) <= arena_maxclass);
-
-	if (size <= bin_maxclass) {
-#ifdef MALLOC_MAG
-		if (__isthreaded && opt_mag) {
-			mag_rack_t *rack = mag_rack;
-			if (rack == NULL) {
-				rack = mag_rack_create(arena);
-				if (rack == NULL)
-					return (NULL);
-				mag_rack = rack;
-			}
-			return (mag_rack_alloc(rack, size, zero));
-		} else
-#endif
-			return (arena_malloc_small(arena, size, zero));
-	} else
-		return (arena_malloc_large(arena, size, zero));
-}
-
-static inline void *
-imalloc(size_t size)
-{
-
-	assert(size != 0);
-
-	if (size <= arena_maxclass)
-		return (arena_malloc(choose_arena(), size, false));
-	else
-		return (huge_malloc(size, false));
-}
-
-static inline void *
-icalloc(size_t size)
-{
-
-	if (size <= arena_maxclass)
-		return (arena_malloc(choose_arena(), size, true));
-	else
-		return (huge_malloc(size, true));
-}
-
-/* Only handles large allocations that require more than page alignment. */
-static void *
-arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
-{
-	void *ret;
-	size_t offset;
-	arena_chunk_t *chunk;
-
-	assert((size & pagesize_mask) == 0);
-	assert((alignment & pagesize_mask) == 0);
-
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
-	if (ret == NULL) {
-		malloc_spin_unlock(&arena->lock);
-		return (NULL);
-	}
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
-
-	offset = (uintptr_t)ret & (alignment - 1);
-	assert((offset & pagesize_mask) == 0);
-	assert(offset < alloc_size);
-	if (offset == 0)
-		arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
-	else {
-		size_t leadsize, trailsize;
-
-		leadsize = alignment - offset;
-		if (leadsize > 0) {
-			arena_run_trim_head(arena, chunk, ret, alloc_size,
-			    alloc_size - leadsize);
-			ret = (void *)((uintptr_t)ret + leadsize);
-		}
-
-		trailsize = alloc_size - leadsize - size;
-		if (trailsize != 0) {
-			/* Trim trailing space. */
-			assert(trailsize < alloc_size);
-			arena_run_trim_tail(arena, chunk, ret, size + trailsize,
-			    size, false);
-		}
-	}
-
-#ifdef MALLOC_STATS
-	arena->stats.nmalloc_large++;
-	arena->stats.allocated_large += size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-
-	if (opt_junk)
-		memset(ret, 0xa5, size);
-	else if (opt_zero)
-		memset(ret, 0, size);
-	return (ret);
-}
-
-static inline void *
-ipalloc(size_t alignment, size_t size)
-{
-	void *ret;
-	size_t ceil_size;
-
-	/*
-	 * Round size up to the nearest multiple of alignment.
-	 *
-	 * This done, we can take advantage of the fact that for each small
-	 * size class, every object is aligned at the smallest power of two
-	 * that is non-zero in the base two representation of the size.  For
-	 * example:
-	 *
-	 *   Size |   Base 2 | Minimum alignment
-	 *   -----+----------+------------------
-	 *     96 |  1100000 |  32
-	 *    144 | 10100000 |  32
-	 *    192 | 11000000 |  64
-	 *
-	 * Depending on runtime settings, it is possible that arena_malloc()
-	 * will further round up to a power of two, but that never causes
-	 * correctness issues.
-	 */
-	ceil_size = (size + (alignment - 1)) & (-alignment);
-	/*
-	 * (ceil_size < size) protects against the combination of maximal
-	 * alignment and size greater than maximal alignment.
-	 */
-	if (ceil_size < size) {
-		/* size_t overflow. */
-		return (NULL);
-	}
-
-	if (ceil_size <= pagesize || (alignment <= pagesize
-	    && ceil_size <= arena_maxclass))
-		ret = arena_malloc(choose_arena(), ceil_size, false);
-	else {
-		size_t run_size;
-
-		/*
-		 * We can't achieve subpage alignment, so round up alignment
-		 * permanently; it makes later calculations simpler.
-		 */
-		alignment = PAGE_CEILING(alignment);
-		ceil_size = PAGE_CEILING(size);
-		/*
-		 * (ceil_size < size) protects against very large sizes within
-		 * pagesize of SIZE_T_MAX.
-		 *
-		 * (ceil_size + alignment < ceil_size) protects against the
-		 * combination of maximal alignment and ceil_size large enough
-		 * to cause overflow.  This is similar to the first overflow
-		 * check above, but it needs to be repeated due to the new
-		 * ceil_size value, which may now be *equal* to maximal
-		 * alignment, whereas before we only detected overflow if the
-		 * original size was *greater* than maximal alignment.
-		 */
-		if (ceil_size < size || ceil_size + alignment < ceil_size) {
-			/* size_t overflow. */
-			return (NULL);
-		}
-
-		/*
-		 * Calculate the size of the over-size run that arena_palloc()
-		 * would need to allocate in order to guarantee the alignment.
-		 */
-		if (ceil_size >= alignment)
-			run_size = ceil_size + alignment - pagesize;
-		else {
-			/*
-			 * It is possible that (alignment << 1) will cause
-			 * overflow, but it doesn't matter because we also
-			 * subtract pagesize, which in the case of overflow
-			 * leaves us with a very large run_size.  That causes
-			 * the first conditional below to fail, which means
-			 * that the bogus run_size value never gets used for
-			 * anything important.
-			 */
-			run_size = (alignment << 1) - pagesize;
-		}
-
-		if (run_size <= arena_maxclass) {
-			ret = arena_palloc(choose_arena(), alignment, ceil_size,
-			    run_size);
-		} else if (alignment <= chunksize)
-			ret = huge_malloc(ceil_size, false);
-		else
-			ret = huge_palloc(alignment, ceil_size);
-	}
-
-	assert(((uintptr_t)ret & (alignment - 1)) == 0);
-	return (ret);
-}
-
-/* Return the size of the allocation pointed to by ptr. */
-static size_t
-arena_salloc(const void *ptr)
-{
-	size_t ret;
-	arena_chunk_t *chunk;
-	size_t pageind, mapbits;
-
-	assert(ptr != NULL);
-	assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
-	mapbits = chunk->map[pageind].bits;
-	assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
-	if ((mapbits & CHUNK_MAP_LARGE) == 0) {
-		arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
-		assert(run->magic == ARENA_RUN_MAGIC);
-		ret = run->bin->reg_size;
-	} else {
-		ret = mapbits & ~pagesize_mask;
-		assert(ret != 0);
-	}
-
-	return (ret);
-}
-
-static inline size_t
-isalloc(const void *ptr)
-{
-	size_t ret;
-	arena_chunk_t *chunk;
-
-	assert(ptr != NULL);
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-	if (chunk != ptr) {
-		/* Region. */
-		assert(chunk->arena->magic == ARENA_MAGIC);
-
-		ret = arena_salloc(ptr);
-	} else {
-		extent_node_t *node, key;
-
-		/* Chunk (huge allocation). */
-
-		malloc_mutex_lock(&huge_mtx);
-
-		/* Extract from tree of huge allocations. */
-		key.addr = __DECONST(void *, ptr);
-		node = extent_tree_ad_search(&huge, &key);
-		assert(node != NULL);
-
-		ret = node->size;
-
-		malloc_mutex_unlock(&huge_mtx);
-	}
-
-	return (ret);
-}
-
-static inline void
-arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
-    arena_chunk_map_t *mapelm)
-{
-	arena_run_t *run;
-	arena_bin_t *bin;
-	size_t size;
-
-	run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-	assert(run->magic == ARENA_RUN_MAGIC);
-	bin = run->bin;
-	size = bin->reg_size;
-
-	if (opt_junk)
-		memset(ptr, 0x5a, size);
-
-	arena_run_reg_dalloc(run, bin, ptr, size);
-	run->nfree++;
-
-	if (run->nfree == bin->nregs) {
-		/* Deallocate run. */
-		if (run == bin->runcur)
-			bin->runcur = NULL;
-		else if (bin->nregs != 1) {
-			size_t run_pageind = (((uintptr_t)run -
-			    (uintptr_t)chunk)) >> pagesize_2pow;
-			arena_chunk_map_t *run_mapelm =
-			    &chunk->map[run_pageind];
-			/*
-			 * This block's conditional is necessary because if the
-			 * run only contains one region, then it never gets
-			 * inserted into the non-full runs tree.
-			 */
-			arena_run_tree_remove(&bin->runs, run_mapelm);
-		}
-#ifdef MALLOC_DEBUG
-		run->magic = 0;
-#endif
-		arena_run_dalloc(arena, run, true);
-#ifdef MALLOC_STATS
-		bin->stats.curruns--;
-#endif
-	} else if (run->nfree == 1 && run != bin->runcur) {
-		/*
-		 * Make sure that bin->runcur always refers to the lowest
-		 * non-full run, if one exists.
-		 */
-		if (bin->runcur == NULL)
-			bin->runcur = run;
-		else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
-			/* Switch runcur. */
-			if (bin->runcur->nfree > 0) {
-				arena_chunk_t *runcur_chunk =
-				    CHUNK_ADDR2BASE(bin->runcur);
-				size_t runcur_pageind =
-				    (((uintptr_t)bin->runcur -
-				    (uintptr_t)runcur_chunk)) >> pagesize_2pow;
-				arena_chunk_map_t *runcur_mapelm =
-				    &runcur_chunk->map[runcur_pageind];
-
-				/* Insert runcur. */
-				arena_run_tree_insert(&bin->runs,
-				    runcur_mapelm);
-			}
-			bin->runcur = run;
-		} else {
-			size_t run_pageind = (((uintptr_t)run -
-			    (uintptr_t)chunk)) >> pagesize_2pow;
-			arena_chunk_map_t *run_mapelm =
-			    &chunk->map[run_pageind];
-
-			assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
-			    NULL);
-			arena_run_tree_insert(&bin->runs, run_mapelm);
-		}
-	}
-#ifdef MALLOC_STATS
-	arena->stats.allocated_small -= size;
-	arena->stats.ndalloc_small++;
-#endif
-}
-
-#ifdef MALLOC_MAG
-static void
-mag_unload(mag_t *mag)
-{
-	arena_chunk_t *chunk;
-	arena_t *arena;
-	void *round;
-	size_t i, ndeferred, nrounds;
-
-	for (ndeferred = mag->nrounds; ndeferred > 0;) {
-		nrounds = ndeferred;
-		/* Lock the arena associated with the first round. */
-		chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
-		arena = chunk->arena;
-#ifdef MALLOC_BALANCE
-		arena_lock_balance(arena);
-#else
-		malloc_spin_lock(&arena->lock);
-#endif
-		/* Deallocate every round that belongs to the locked arena. */
-		for (i = ndeferred = 0; i < nrounds; i++) {
-			round = mag->rounds[i];
-			chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
-			if (chunk->arena == arena) {
-				size_t pageind = (((uintptr_t)round -
-				    (uintptr_t)chunk) >> pagesize_2pow);
-				arena_chunk_map_t *mapelm =
-				    &chunk->map[pageind];
-				arena_dalloc_small(arena, chunk, round, mapelm);
-			} else {
-				/*
-				 * This round was allocated via a different
-				 * arena than the one that is currently locked.
-				 * Stash the round, so that it can be handled
-				 * in a future pass.
-				 */
-				mag->rounds[ndeferred] = round;
-				ndeferred++;
-			}
-		}
-		malloc_spin_unlock(&arena->lock);
-	}
-
-	mag->nrounds = 0;
-}
-
-static inline void
-mag_rack_dalloc(mag_rack_t *rack, void *ptr)
-{
-	arena_t *arena;
-	arena_chunk_t *chunk;
-	arena_run_t *run;
-	arena_bin_t *bin;
-	bin_mags_t *bin_mags;
-	mag_t *mag;
-	size_t pageind, binind;
-	arena_chunk_map_t *mapelm;
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-	arena = chunk->arena;
-	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
-	mapelm = &chunk->map[pageind];
-	run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-	assert(run->magic == ARENA_RUN_MAGIC);
-	bin = run->bin;
-	binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
-	    sizeof(arena_bin_t);
-	assert(binind < nbins);
-
-	if (opt_junk)
-		memset(ptr, 0x5a, arena->bins[binind].reg_size);
-
-	bin_mags = &rack->bin_mags[binind];
-	mag = bin_mags->curmag;
-	if (mag == NULL) {
-		/* Create an initial magazine for this size class. */
-		assert(bin_mags->sparemag == NULL);
-		mag = mag_create(choose_arena(), binind);
-		if (mag == NULL) {
-			malloc_spin_lock(&arena->lock);
-			arena_dalloc_small(arena, chunk, ptr, mapelm);
-			malloc_spin_unlock(&arena->lock);
-			return;
-		}
-		bin_mags->curmag = mag;
-	}
-
-	if (mag->nrounds == max_rounds) {
-		if (bin_mags->sparemag != NULL) {
-			if (bin_mags->sparemag->nrounds < max_rounds) {
-				/* Swap magazines. */
-				bin_mags->curmag = bin_mags->sparemag;
-				bin_mags->sparemag = mag;
-				mag = bin_mags->curmag;
-			} else {
-				/* Unload the current magazine. */
-				mag_unload(mag);
-			}
-		} else {
-			/* Create a second magazine. */
-			mag = mag_create(choose_arena(), binind);
-			if (mag == NULL) {
-				mag = rack->bin_mags[binind].curmag;
-				mag_unload(mag);
-			} else {
-				bin_mags->sparemag = bin_mags->curmag;
-				bin_mags->curmag = mag;
-			}
-		}
-		assert(mag->nrounds < max_rounds);
-	}
-	mag->rounds[mag->nrounds] = ptr;
-	mag->nrounds++;
-}
-#endif
-
-static void
-arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
-	/* Large allocation. */
-	malloc_spin_lock(&arena->lock);
-
-#ifndef MALLOC_STATS
-	if (opt_junk)
-#endif
-	{
-		size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
-		    pagesize_2pow;
-		size_t size = chunk->map[pageind].bits & ~pagesize_mask;
-
-#ifdef MALLOC_STATS
-		if (opt_junk)
-#endif
-			memset(ptr, 0x5a, size);
-#ifdef MALLOC_STATS
-		arena->stats.allocated_large -= size;
-#endif
-	}
-#ifdef MALLOC_STATS
-	arena->stats.ndalloc_large++;
-#endif
-
-	arena_run_dalloc(arena, (arena_run_t *)ptr, true);
-	malloc_spin_unlock(&arena->lock);
-}
-
-static inline void
-arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
-	size_t pageind;
-	arena_chunk_map_t *mapelm;
-
-	assert(arena != NULL);
-	assert(arena->magic == ARENA_MAGIC);
-	assert(chunk->arena == arena);
-	assert(ptr != NULL);
-	assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
-	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
-	mapelm = &chunk->map[pageind];
-	assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
-	if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
-		/* Small allocation. */
-#ifdef MALLOC_MAG
-		if (__isthreaded && opt_mag) {
-			mag_rack_t *rack = mag_rack;
-			if (rack == NULL) {
-				rack = mag_rack_create(arena);
-				if (rack == NULL) {
-					malloc_spin_lock(&arena->lock);
-					arena_dalloc_small(arena, chunk, ptr,
-					    mapelm);
-					malloc_spin_unlock(&arena->lock);
-				}
-				mag_rack = rack;
-			}
-			mag_rack_dalloc(rack, ptr);
-		} else {
-#endif
-			malloc_spin_lock(&arena->lock);
-			arena_dalloc_small(arena, chunk, ptr, mapelm);
-			malloc_spin_unlock(&arena->lock);
-#ifdef MALLOC_MAG
-		}
-#endif
-	} else
-		arena_dalloc_large(arena, chunk, ptr);
-}
-
-static inline void
-idalloc(void *ptr)
-{
-	arena_chunk_t *chunk;
-
-	assert(ptr != NULL);
-
-	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-	if (chunk != ptr)
-		arena_dalloc(chunk->arena, chunk, ptr);
-	else
-		huge_dalloc(ptr);
-}
-
-static void
-arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
-    size_t size, size_t oldsize)
-{
-
-	assert(size < oldsize);
-
-	/*
-	 * Shrink the run, and make trailing pages available for other
-	 * allocations.
-	 */
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
-	    true);
-#ifdef MALLOC_STATS
-	arena->stats.allocated_large -= oldsize - size;
-#endif
-	malloc_spin_unlock(&arena->lock);
-}
-
-static bool
-arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
-    size_t size, size_t oldsize)
-{
-	size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
-	size_t npages = oldsize >> pagesize_2pow;
-
-	assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
-
-	/* Try to extend the run. */
-	assert(size > oldsize);
-#ifdef MALLOC_BALANCE
-	arena_lock_balance(arena);
-#else
-	malloc_spin_lock(&arena->lock);
-#endif
-	if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
-	    & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
-	    ~pagesize_mask) >= size - oldsize) {
-		/*
-		 * The next run is available and sufficiently large.  Split the
-		 * following run, then merge the first part with the existing
-		 * allocation.
-		 */
-		arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
-		    ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
-		    false);
-
-		chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
-		    CHUNK_MAP_ALLOCATED;
-		chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
-		    CHUNK_MAP_ALLOCATED;
-
-#ifdef MALLOC_STATS
-		arena->stats.allocated_large += size - oldsize;
-#endif
-		malloc_spin_unlock(&arena->lock);
-		return (false);
-	}
-	malloc_spin_unlock(&arena->lock);
-
-	return (true);
-}
-
-/*
- * Try to resize a large allocation, in order to avoid copying.  This will
- * always fail if growing an object, and the following run is already in use.
- */
-static bool
-arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
-{
-	size_t psize;
-
-	psize = PAGE_CEILING(size);
-	if (psize == oldsize) {
-		/* Same size class. */
-		if (opt_junk && size < oldsize) {
-			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
-			    size);
-		}
-		return (false);
-	} else {
-		arena_chunk_t *chunk;
-		arena_t *arena;
-
-		chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
-		arena = chunk->arena;
-		assert(arena->magic == ARENA_MAGIC);
-
-		if (psize < oldsize) {
-			/* Fill before shrinking in order avoid a race. */
-			if (opt_junk) {
-				memset((void *)((uintptr_t)ptr + size), 0x5a,
-				    oldsize - size);
-			}
-			arena_ralloc_large_shrink(arena, chunk, ptr, psize,
-			    oldsize);
-			return (false);
-		} else {
-			bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
-			    psize, oldsize);
-			if (ret == false && opt_zero) {
-				memset((void *)((uintptr_t)ptr + oldsize), 0,
-				    size - oldsize);
-			}
-			return (ret);
-		}
-	}
-}
-
-static void *
-arena_ralloc(void *ptr, size_t size, size_t oldsize)
-{
-	void *ret;
-	size_t copysize;
-
-	/* Try to avoid moving the allocation. */
-	if (size <= bin_maxclass) {
-		if (oldsize <= bin_maxclass && size2bin[size] ==
-		    size2bin[oldsize])
-			goto IN_PLACE;
-	} else {
-		if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
-			assert(size > bin_maxclass);
-			if (arena_ralloc_large(ptr, size, oldsize) == false)
-				return (ptr);
-		}
-	}
-
-	/*
-	 * If we get here, then size and oldsize are different enough that we
-	 * need to move the object.  In that case, fall back to allocating new
-	 * space and copying.
-	 */
-	ret = arena_malloc(choose_arena(), size, false);
-	if (ret == NULL)
-		return (NULL);
-
-	/* Junk/zero-filling were already done by arena_malloc(). */
-	copysize = (size < oldsize) ? size : oldsize;
-	memcpy(ret, ptr, copysize);
-	idalloc(ptr);
-	return (ret);
-IN_PLACE:
-	if (opt_junk && size < oldsize)
-		memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
-	else if (opt_zero && size > oldsize)
-		memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
-	return (ptr);
-}
-
-static inline void *
-iralloc(void *ptr, size_t size)
-{
-	size_t oldsize;
-
-	assert(ptr != NULL);
-	assert(size != 0);
-
-	oldsize = isalloc(ptr);
-
-	if (size <= arena_maxclass)
-		return (arena_ralloc(ptr, size, oldsize));
-	else
-		return (huge_ralloc(ptr, size, oldsize));
-}
-
-static bool
-arena_new(arena_t *arena)
-{
-	unsigned i;
-	arena_bin_t *bin;
-	size_t prev_run_size;
-
-	if (malloc_spin_init(&arena->lock))
-		return (true);
-
-#ifdef MALLOC_STATS
-	memset(&arena->stats, 0, sizeof(arena_stats_t));
-#endif
-
-	/* Initialize chunks. */
-	arena_chunk_tree_dirty_new(&arena->chunks_dirty);
-	arena->spare = NULL;
-
-	arena->ndirty = 0;
-
-	arena_avail_tree_new(&arena->runs_avail);
-
-#ifdef MALLOC_BALANCE
-	arena->contention = 0;
-#endif
-
-	/* Initialize bins. */
-	prev_run_size = pagesize;
-
-	i = 0;
-#ifdef MALLOC_TINY
-	/* (2^n)-spaced tiny bins. */
-	for (; i < ntbins; i++) {
-		bin = &arena->bins[i];
-		bin->runcur = NULL;
-		arena_run_tree_new(&bin->runs);
-
-		bin->reg_size = (1U << (TINY_MIN_2POW + i));
-
-		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
-		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
-	}
-#endif
-
-	/* Quantum-spaced bins. */
-	for (; i < ntbins + nqbins; i++) {
-		bin = &arena->bins[i];
-		bin->runcur = NULL;
-		arena_run_tree_new(&bin->runs);
-
-		bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
-
-		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
-		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
-	}
-
-	/* Cacheline-spaced bins. */
-	for (; i < ntbins + nqbins + ncbins; i++) {
-		bin = &arena->bins[i];
-		bin->runcur = NULL;
-		arena_run_tree_new(&bin->runs);
-
-		bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
-		    CACHELINE_2POW);
-
-		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
-		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
-	}
-
-	/* Subpage-spaced bins. */
-	for (; i < nbins; i++) {
-		bin = &arena->bins[i];
-		bin->runcur = NULL;
-		arena_run_tree_new(&bin->runs);
-
-		bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
-		    << SUBPAGE_2POW);
-
-		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
-		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
-	}
-
-#ifdef MALLOC_DEBUG
-	arena->magic = ARENA_MAGIC;
-#endif
-
-	return (false);
-}
-
-/* Create a new arena and insert it into the arenas array at index ind. */
-static arena_t *
-arenas_extend(unsigned ind)
-{
-	arena_t *ret;
-
-	/* Allocate enough space for trailing bins. */
-	ret = (arena_t *)base_alloc(sizeof(arena_t)
-	    + (sizeof(arena_bin_t) * (nbins - 1)));
-	if (ret != NULL && arena_new(ret) == false) {
-		arenas[ind] = ret;
-		return (ret);
-	}
-	/* Only reached if there is an OOM error. */
-
-	/*
-	 * OOM here is quite inconvenient to propagate, since dealing with it
-	 * would require a check for failure in the fast path.  Instead, punt
-	 * by using arenas[0].  In practice, this is an extremely unlikely
-	 * failure.
-	 */
-	_malloc_message(_getprogname(),
-	    ": (malloc) Error initializing arena\n", "", "");
-	if (opt_abort)
-		abort();
-
-	return (arenas[0]);
-}
-
-#ifdef MALLOC_MAG
-static mag_t *
-mag_create(arena_t *arena, size_t binind)
-{
-	mag_t *ret;
-
-	if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
-	    bin_maxclass) {
-		ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
-		    * (max_rounds - 1)), false);
-	} else {
-		ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
-		    1)));
-	}
-	if (ret == NULL)
-		return (NULL);
-	ret->binind = binind;
-	ret->nrounds = 0;
-
-	return (ret);
-}
-
-static void
-mag_destroy(mag_t *mag)
-{
-	arena_t *arena;
-	arena_chunk_t *chunk;
-	size_t pageind;
-	arena_chunk_map_t *mapelm;
-
-	chunk = CHUNK_ADDR2BASE(mag);
-	arena = chunk->arena;
-	pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> pagesize_2pow);
-	mapelm = &chunk->map[pageind];
-
-	assert(mag->nrounds == 0);
-	if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
-	    bin_maxclass) {
-		malloc_spin_lock(&arena->lock);
-		arena_dalloc_small(arena, chunk, mag, mapelm);
-		malloc_spin_unlock(&arena->lock);
-	} else
-		idalloc(mag);
-}
-
-static mag_rack_t *
-mag_rack_create(arena_t *arena)
-{
-
-	assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
-	    bin_maxclass);
-	return (arena_malloc_small(arena, sizeof(mag_rack_t) +
-	    (sizeof(bin_mags_t) * (nbins - 1)), true));
-}
-
-static void
-mag_rack_destroy(mag_rack_t *rack)
-{
-	arena_t *arena;
-	arena_chunk_t *chunk;
-	bin_mags_t *bin_mags;
-	size_t i, pageind;
-	arena_chunk_map_t *mapelm;
-
-	for (i = 0; i < nbins; i++) {
-		bin_mags = &rack->bin_mags[i];
-		if (bin_mags->curmag != NULL) {
-			assert(bin_mags->curmag->binind == i);
-			mag_unload(bin_mags->curmag);
-			mag_destroy(bin_mags->curmag);
-		}
-		if (bin_mags->sparemag != NULL) {
-			assert(bin_mags->sparemag->binind == i);
-			mag_unload(bin_mags->sparemag);
-			mag_destroy(bin_mags->sparemag);
-		}
-	}
-
-	chunk = CHUNK_ADDR2BASE(rack);
-	arena = chunk->arena;
-	pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> pagesize_2pow);
-	mapelm = &chunk->map[pageind];
-
-	malloc_spin_lock(&arena->lock);
-	arena_dalloc_small(arena, chunk, rack, mapelm);
-	malloc_spin_unlock(&arena->lock);
-}
-#endif
-
-/*
- * End arena.
- */
-/******************************************************************************/
-/*
- * Begin general internal functions.
- */
-
-static void *
-huge_malloc(size_t size, bool zero)
-{
-	void *ret;
-	size_t csize;
-	extent_node_t *node;
-
-	/* Allocate one or more contiguous chunks for this request. */
-
-	csize = CHUNK_CEILING(size);
-	if (csize == 0) {
-		/* size is large enough to cause size_t wrap-around. */
-		return (NULL);
-	}
-
-	/* Allocate an extent node with which to track the chunk. */
-	node = base_node_alloc();
-	if (node == NULL)
-		return (NULL);
-
-	ret = chunk_alloc(csize, zero);
-	if (ret == NULL) {
-		base_node_dealloc(node);
-		return (NULL);
-	}
-
-	/* Insert node into huge. */
-	node->addr = ret;
-	node->size = csize;
-
-	malloc_mutex_lock(&huge_mtx);
-	extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
-	huge_nmalloc++;
-	huge_allocated += csize;
-#endif
-	malloc_mutex_unlock(&huge_mtx);
-
-	if (zero == false) {
-		if (opt_junk)
-			memset(ret, 0xa5, csize);
-		else if (opt_zero)
-			memset(ret, 0, csize);
-	}
-
-	return (ret);
-}
-
-/* Only handles large allocations that require more than chunk alignment. */
-static void *
-huge_palloc(size_t alignment, size_t size)
-{
-	void *ret;
-	size_t alloc_size, chunk_size, offset;
-	extent_node_t *node;
-
-	/*
-	 * This allocation requires alignment that is even larger than chunk
-	 * alignment.  This means that huge_malloc() isn't good enough.
-	 *
-	 * Allocate almost twice as many chunks as are demanded by the size or
-	 * alignment, in order to assure the alignment can be achieved, then
-	 * unmap leading and trailing chunks.
-	 */
-	assert(alignment >= chunksize);
-
-	chunk_size = CHUNK_CEILING(size);
-
-	if (size >= alignment)
-		alloc_size = chunk_size + alignment - chunksize;
-	else
-		alloc_size = (alignment << 1) - chunksize;
-
-	/* Allocate an extent node with which to track the chunk. */
-	node = base_node_alloc();
-	if (node == NULL)
-		return (NULL);
-
-	ret = chunk_alloc(alloc_size, false);
-	if (ret == NULL) {
-		base_node_dealloc(node);
-		return (NULL);
-	}
-
-	offset = (uintptr_t)ret & (alignment - 1);
-	assert((offset & chunksize_mask) == 0);
-	assert(offset < alloc_size);
-	if (offset == 0) {
-		/* Trim trailing space. */
-		chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
-		    - chunk_size);
-	} else {
-		size_t trailsize;
-
-		/* Trim leading space. */
-		chunk_dealloc(ret, alignment - offset);
-
-		ret = (void *)((uintptr_t)ret + (alignment - offset));
-
-		trailsize = alloc_size - (alignment - offset) - chunk_size;
-		if (trailsize != 0) {
-		    /* Trim trailing space. */
-		    assert(trailsize < alloc_size);
-		    chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
-			trailsize);
-		}
-	}
-
-	/* Insert node into huge. */
-	node->addr = ret;
-	node->size = chunk_size;
-
-	malloc_mutex_lock(&huge_mtx);
-	extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
-	huge_nmalloc++;
-	huge_allocated += chunk_size;
-#endif
-	malloc_mutex_unlock(&huge_mtx);
-
-	if (opt_junk)
-		memset(ret, 0xa5, chunk_size);
-	else if (opt_zero)
-		memset(ret, 0, chunk_size);
-
-	return (ret);
-}
-
-static void *
-huge_ralloc(void *ptr, size_t size, size_t oldsize)
-{
-	void *ret;
-	size_t copysize;
-
-	/* Avoid moving the allocation if the size class would not change. */
-	if (oldsize > arena_maxclass &&
-	    CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
-		if (opt_junk && size < oldsize) {
-			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
-			    - size);
-		} else if (opt_zero && size > oldsize) {
-			memset((void *)((uintptr_t)ptr + oldsize), 0, size
-			    - oldsize);
-		}
-		return (ptr);
-	}
-
-	/*
-	 * If we get here, then size and oldsize are different enough that we
-	 * need to use a different size class.  In that case, fall back to
-	 * allocating new space and copying.
-	 */
-	ret = huge_malloc(size, false);
-	if (ret == NULL)
-		return (NULL);
-
-	copysize = (size < oldsize) ? size : oldsize;
-	memcpy(ret, ptr, copysize);
-	idalloc(ptr);
-	return (ret);
-}
-
-static void
-huge_dalloc(void *ptr)
-{
-	extent_node_t *node, key;
-
-	malloc_mutex_lock(&huge_mtx);
-
-	/* Extract from tree of huge allocations. */
-	key.addr = ptr;
-	node = extent_tree_ad_search(&huge, &key);
-	assert(node != NULL);
-	assert(node->addr == ptr);
-	extent_tree_ad_remove(&huge, node);
-
-#ifdef MALLOC_STATS
-	huge_ndalloc++;
-	huge_allocated -= node->size;
-#endif
-
-	malloc_mutex_unlock(&huge_mtx);
-
-	/* Unmap chunk. */
-#ifdef MALLOC_DSS
-	if (opt_dss && opt_junk)
-		memset(node->addr, 0x5a, node->size);
-#endif
-	chunk_dealloc(node->addr, node->size);
-
-	base_node_dealloc(node);
-}
-
-static void
-malloc_print_stats(void)
-{
-
-	if (opt_print_stats) {
-		char s[UMAX2S_BUFSIZE];
-		_malloc_message("___ Begin malloc statistics ___\n", "", "",
-		    "");
-		_malloc_message("Assertions ",
-#ifdef NDEBUG
-		    "disabled",
-#else
-		    "enabled",
-#endif
-		    "\n", "");
-		_malloc_message("Boolean MALLOC_OPTIONS: ",
-		    opt_abort ? "A" : "a", "", "");
-#ifdef MALLOC_DSS
-		_malloc_message(opt_dss ? "D" : "d", "", "", "");
-#endif
-#ifdef MALLOC_MAG
-		_malloc_message(opt_mag ? "G" : "g", "", "", "");
-#endif
-		_malloc_message(opt_junk ? "J" : "j", "", "", "");
-#ifdef MALLOC_DSS
-		_malloc_message(opt_mmap ? "M" : "m", "", "", "");
-#endif
-		_malloc_message(opt_utrace ? "PU" : "Pu",
-		    opt_sysv ? "V" : "v",
-		    opt_xmalloc ? "X" : "x",
-		    opt_zero ? "Z\n" : "z\n");
-
-		_malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
-		_malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
-#ifdef MALLOC_BALANCE
-		_malloc_message("Arena balance threshold: ",
-		    umax2s(opt_balance_threshold, s), "\n", "");
-#endif
-		_malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
-		    "\n", "");
-		_malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
-		_malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
-		    s), "\n", "");
-#ifdef MALLOC_TINY
-		_malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
-		    TINY_MIN_2POW), s), "..", "");
-		_malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
-#endif
-		_malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
-		    s), "..", "");
-		_malloc_message(umax2s(qspace_max, s), "]\n", "", "");
-		_malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
-		    s), "..", "");
-		_malloc_message(umax2s(cspace_max, s), "]\n", "", "");
-		_malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
-		    s), "..", "");
-		_malloc_message(umax2s(sspace_max, s), "]\n", "", "");
-#ifdef MALLOC_MAG
-		_malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
-		    "\n", "");
-#endif
-		_malloc_message("Max dirty pages per arena: ",
-		    umax2s(opt_dirty_max, s), "\n", "");
-
-		_malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
-		_malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
-
-#ifdef MALLOC_STATS
-		{
-			size_t allocated, mapped;
-#ifdef MALLOC_BALANCE
-			uint64_t nbalance = 0;
-#endif
-			unsigned i;
-			arena_t *arena;
-
-			/* Calculate and print allocated/mapped stats. */
-
-			/* arenas. */
-			for (i = 0, allocated = 0; i < narenas; i++) {
-				if (arenas[i] != NULL) {
-					malloc_spin_lock(&arenas[i]->lock);
-					allocated +=
-					    arenas[i]->stats.allocated_small;
-					allocated +=
-					    arenas[i]->stats.allocated_large;
-#ifdef MALLOC_BALANCE
-					nbalance += arenas[i]->stats.nbalance;
-#endif
-					malloc_spin_unlock(&arenas[i]->lock);
-				}
-			}
-
-			/* huge/base. */
-			malloc_mutex_lock(&huge_mtx);
-			allocated += huge_allocated;
-			mapped = stats_chunks.curchunks * chunksize;
-			malloc_mutex_unlock(&huge_mtx);
-
-			malloc_mutex_lock(&base_mtx);
-			mapped += base_mapped;
-			malloc_mutex_unlock(&base_mtx);
-
-			malloc_printf("Allocated: %zu, mapped: %zu\n",
-			    allocated, mapped);
-
-#ifdef MALLOC_BALANCE
-			malloc_printf("Arena balance reassignments: %llu\n",
-			    nbalance);
-#endif
-
-			/* Print chunk stats. */
-			{
-				chunk_stats_t chunks_stats;
-
-				malloc_mutex_lock(&huge_mtx);
-				chunks_stats = stats_chunks;
-				malloc_mutex_unlock(&huge_mtx);
-
-				malloc_printf("chunks: nchunks   "
-				    "highchunks    curchunks\n");
-				malloc_printf("  %13llu%13lu%13lu\n",
-				    chunks_stats.nchunks,
-				    chunks_stats.highchunks,
-				    chunks_stats.curchunks);
-			}
-
-			/* Print chunk stats. */
-			malloc_printf(
-			    "huge: nmalloc      ndalloc    allocated\n");
-			malloc_printf(" %12llu %12llu %12zu\n",
-			    huge_nmalloc, huge_ndalloc, huge_allocated);
-
-			/* Print stats for each arena. */
-			for (i = 0; i < narenas; i++) {
-				arena = arenas[i];
-				if (arena != NULL) {
-					malloc_printf(
-					    "\narenas[%u]:\n", i);
-					malloc_spin_lock(&arena->lock);
-					stats_print(arena);
-					malloc_spin_unlock(&arena->lock);
-				}
-			}
-		}
-#endif /* #ifdef MALLOC_STATS */
-		_malloc_message("--- End malloc statistics ---\n", "", "", "");
-	}
-}
-
-#ifdef MALLOC_DEBUG
-static void
-size2bin_validate(void)
-{
-	size_t i, size, binind;
-
-	assert(size2bin[0] == 0xffU);
-	i = 1;
-#  ifdef MALLOC_TINY
-	/* Tiny. */
-	for (; i < (1U << TINY_MIN_2POW); i++) {
-		size = pow2_ceil(1U << TINY_MIN_2POW);
-		binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
-		assert(size2bin[i] == binind);
-	}
-	for (; i < qspace_min; i++) {
-		size = pow2_ceil(i);
-		binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
-		assert(size2bin[i] == binind);
-	}
-#  endif
-	/* Quantum-spaced. */
-	for (; i <= qspace_max; i++) {
-		size = QUANTUM_CEILING(i);
-		binind = ntbins + (size >> QUANTUM_2POW) - 1;
-		assert(size2bin[i] == binind);
-	}
-	/* Cacheline-spaced. */
-	for (; i <= cspace_max; i++) {
-		size = CACHELINE_CEILING(i);
-		binind = ntbins + nqbins + ((size - cspace_min) >>
-		    CACHELINE_2POW);
-		assert(size2bin[i] == binind);
-	}
-	/* Sub-page. */
-	for (; i <= sspace_max; i++) {
-		size = SUBPAGE_CEILING(i);
-		binind = ntbins + nqbins + ncbins + ((size - sspace_min)
-		    >> SUBPAGE_2POW);
-		assert(size2bin[i] == binind);
-	}
-}
-#endif
-
-static bool
-size2bin_init(void)
-{
-
-	if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
-	    || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
-		return (size2bin_init_hard());
-
-	size2bin = const_size2bin;
-#ifdef MALLOC_DEBUG
-	assert(sizeof(const_size2bin) == bin_maxclass + 1);
-	size2bin_validate();
-#endif
-	return (false);
-}
-
-static bool
-size2bin_init_hard(void)
-{
-	size_t i, size, binind;
-	uint8_t *custom_size2bin;
-
-	assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
-	    || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
-
-	custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
-	if (custom_size2bin == NULL)
-		return (true);
-
-	custom_size2bin[0] = 0xffU;
-	i = 1;
-#ifdef MALLOC_TINY
-	/* Tiny. */
-	for (; i < (1U << TINY_MIN_2POW); i++) {
-		size = pow2_ceil(1U << TINY_MIN_2POW);
-		binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
-		custom_size2bin[i] = binind;
-	}
-	for (; i < qspace_min; i++) {
-		size = pow2_ceil(i);
-		binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
-		custom_size2bin[i] = binind;
-	}
-#endif
-	/* Quantum-spaced. */
-	for (; i <= qspace_max; i++) {
-		size = QUANTUM_CEILING(i);
-		binind = ntbins + (size >> QUANTUM_2POW) - 1;
-		custom_size2bin[i] = binind;
-	}
-	/* Cacheline-spaced. */
-	for (; i <= cspace_max; i++) {
-		size = CACHELINE_CEILING(i);
-		binind = ntbins + nqbins + ((size - cspace_min) >>
-		    CACHELINE_2POW);
-		custom_size2bin[i] = binind;
-	}
-	/* Sub-page. */
-	for (; i <= sspace_max; i++) {
-		size = SUBPAGE_CEILING(i);
-		binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
-		    SUBPAGE_2POW);
-		custom_size2bin[i] = binind;
-	}
-
-	size2bin = custom_size2bin;
-#ifdef MALLOC_DEBUG
-	size2bin_validate();
-#endif
-	return (false);
-}
-
-/*
- * FreeBSD's pthreads implementation calls malloc(3), so the malloc
- * implementation has to take pains to avoid infinite recursion during
- * initialization.
- */
-static inline bool
-malloc_init(void)
-{
-
-	if (malloc_initialized == false)
-		return (malloc_init_hard());
-
-	return (false);
-}
-
-static bool
-malloc_init_hard(void)
-{
-	unsigned i;
-	int linklen;
-	char buf[PATH_MAX + 1];
-	const char *opts;
-
-	malloc_mutex_lock(&init_lock);
-	if (malloc_initialized) {
-		/*
-		 * Another thread initialized the allocator before this one
-		 * acquired init_lock.
-		 */
-		malloc_mutex_unlock(&init_lock);
-		return (false);
-	}
-
-	/* Get number of CPUs. */
-	{
-		int mib[2];
-		size_t len;
-
-		mib[0] = CTL_HW;
-		mib[1] = HW_NCPU;
-		len = sizeof(ncpus);
-		if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
-			/* Error. */
-			ncpus = 1;
-		}
-	}
-
-	/* Get page size. */
-	{
-		long result;
-
-		result = sysconf(_SC_PAGESIZE);
-		assert(result != -1);
-		pagesize = (unsigned)result;
-
-		/*
-		 * We assume that pagesize is a power of 2 when calculating
-		 * pagesize_mask and pagesize_2pow.
-		 */
-		assert(((result - 1) & result) == 0);
-		pagesize_mask = result - 1;
-		pagesize_2pow = ffs((int)result) - 1;
-	}
-
-	for (i = 0; i < 3; i++) {
-		unsigned j;
-
-		/* Get runtime configuration. */
-		switch (i) {
-		case 0:
-			if ((linklen = readlink("/etc/malloc.conf", buf,
-						sizeof(buf) - 1)) != -1) {
-				/*
-				 * Use the contents of the "/etc/malloc.conf"
-				 * symbolic link's name.
-				 */
-				buf[linklen] = '\0';
-				opts = buf;
-			} else {
-				/* No configuration specified. */
-				buf[0] = '\0';
-				opts = buf;
-			}
-			break;
-		case 1:
-			if (issetugid() == 0 && (opts =
-			    getenv("MALLOC_OPTIONS")) != NULL) {
-				/*
-				 * Do nothing; opts is already initialized to
-				 * the value of the MALLOC_OPTIONS environment
-				 * variable.
-				 */
-			} else {
-				/* No configuration specified. */
-				buf[0] = '\0';
-				opts = buf;
-			}
-			break;
-		case 2:
-			if (_malloc_options != NULL) {
-				/*
-				 * Use options that were compiled into the
-				 * program.
-				 */
-				opts = _malloc_options;
-			} else {
-				/* No configuration specified. */
-				buf[0] = '\0';
-				opts = buf;
-			}
-			break;
-		default:
-			/* NOTREACHED */
-			assert(false);
-		}
-
-		for (j = 0; opts[j] != '\0'; j++) {
-			unsigned k, nreps;
-			bool nseen;
-
-			/* Parse repetition count, if any. */
-			for (nreps = 0, nseen = false;; j++, nseen = true) {
-				switch (opts[j]) {
-					case '0': case '1': case '2': case '3':
-					case '4': case '5': case '6': case '7':
-					case '8': case '9':
-						nreps *= 10;
-						nreps += opts[j] - '0';
-						break;
-					default:
-						goto MALLOC_OUT;
-				}
-			}
-MALLOC_OUT:
-			if (nseen == false)
-				nreps = 1;
-
-			for (k = 0; k < nreps; k++) {
-				switch (opts[j]) {
-				case 'a':
-					opt_abort = false;
-					break;
-				case 'A':
-					opt_abort = true;
-					break;
-				case 'b':
-#ifdef MALLOC_BALANCE
-					opt_balance_threshold >>= 1;
-#endif
-					break;
-				case 'B':
-#ifdef MALLOC_BALANCE
-					if (opt_balance_threshold == 0)
-						opt_balance_threshold = 1;
-					else if ((opt_balance_threshold << 1)
-					    > opt_balance_threshold)
-						opt_balance_threshold <<= 1;
-#endif
-					break;
-				case 'c':
-					if (opt_cspace_max_2pow - 1 >
-					    opt_qspace_max_2pow &&
-					    opt_cspace_max_2pow >
-					    CACHELINE_2POW)
-						opt_cspace_max_2pow--;
-					break;
-				case 'C':
-					if (opt_cspace_max_2pow < pagesize_2pow
-					    - 1)
-						opt_cspace_max_2pow++;
-					break;
-				case 'd':
-#ifdef MALLOC_DSS
-					opt_dss = false;
-#endif
-					break;
-				case 'D':
-#ifdef MALLOC_DSS
-					opt_dss = true;
-#endif
-					break;
-				case 'f':
-					opt_dirty_max >>= 1;
-					break;
-				case 'F':
-					if (opt_dirty_max == 0)
-						opt_dirty_max = 1;
-					else if ((opt_dirty_max << 1) != 0)
-						opt_dirty_max <<= 1;
-					break;
-#ifdef MALLOC_MAG
-				case 'g':
-					opt_mag = false;
-					break;
-				case 'G':
-					opt_mag = true;
-					break;
-#endif
-				case 'j':
-					opt_junk = false;
-					break;
-				case 'J':
-					opt_junk = true;
-					break;
-				case 'k':
-					/*
-					 * Chunks always require at least one
-					 * header page, so chunks can never be
-					 * smaller than two pages.
-					 */
-					if (opt_chunk_2pow > pagesize_2pow + 1)
-						opt_chunk_2pow--;
-					break;
-				case 'K':
-					if (opt_chunk_2pow + 1 <
-					    (sizeof(size_t) << 3))
-						opt_chunk_2pow++;
-					break;
-				case 'm':
-#ifdef MALLOC_DSS
-					opt_mmap = false;
-#endif
-					break;
-				case 'M':
-#ifdef MALLOC_DSS
-					opt_mmap = true;
-#endif
-					break;
-				case 'n':
-					opt_narenas_lshift--;
-					break;
-				case 'N':
-					opt_narenas_lshift++;
-					break;
-				case 'p':
-					opt_print_stats = false;
-					break;
-				case 'P':
-					opt_print_stats = true;
-					break;
-				case 'q':
-					if (opt_qspace_max_2pow > QUANTUM_2POW)
-						opt_qspace_max_2pow--;
-					break;
-				case 'Q':
-					if (opt_qspace_max_2pow + 1 <
-					    opt_cspace_max_2pow)
-						opt_qspace_max_2pow++;
-					break;
-#ifdef MALLOC_MAG
-				case 'R':
-					if (opt_mag_size_2pow + 1 < (8U <<
-					    SIZEOF_PTR_2POW))
-						opt_mag_size_2pow++;
-					break;
-				case 'r':
-					/*
-					 * Make sure there's always at least
-					 * one round per magazine.
-					 */
-					if ((1U << (opt_mag_size_2pow-1)) >=
-					    sizeof(mag_t))
-						opt_mag_size_2pow--;
-					break;
-#endif
-				case 'u':
-					opt_utrace = false;
-					break;
-				case 'U':
-					opt_utrace = true;
-					break;
-				case 'v':
-					opt_sysv = false;
-					break;
-				case 'V':
-					opt_sysv = true;
-					break;
-				case 'x':
-					opt_xmalloc = false;
-					break;
-				case 'X':
-					opt_xmalloc = true;
-					break;
-				case 'z':
-					opt_zero = false;
-					break;
-				case 'Z':
-					opt_zero = true;
-					break;
-				default: {
-					char cbuf[2];
-
-					cbuf[0] = opts[j];
-					cbuf[1] = '\0';
-					_malloc_message(_getprogname(),
-					    ": (malloc) Unsupported character "
-					    "in malloc options: '", cbuf,
-					    "'\n");
-				}
-				}
-			}
-		}
-	}
-
-#ifdef MALLOC_DSS
-	/* Make sure that there is some method for acquiring memory. */
-	if (opt_dss == false && opt_mmap == false)
-		opt_mmap = true;
-#endif
-
-	/* Take care to call atexit() only once. */
-	if (opt_print_stats) {
-		/* Print statistics at exit. */
-		atexit(malloc_print_stats);
-	}
-
-#ifdef MALLOC_MAG
-	/*
-	 * Calculate the actual number of rounds per magazine, taking into
-	 * account header overhead.
-	 */
-	max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
-	    (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
-#endif
-
-	/* Set variables according to the value of opt_[qc]space_max_2pow. */
-	qspace_max = (1U << opt_qspace_max_2pow);
-	cspace_min = CACHELINE_CEILING(qspace_max);
-	if (cspace_min == qspace_max)
-		cspace_min += CACHELINE;
-	cspace_max = (1U << opt_cspace_max_2pow);
-	sspace_min = SUBPAGE_CEILING(cspace_max);
-	if (sspace_min == cspace_max)
-		sspace_min += SUBPAGE;
-	assert(sspace_min < pagesize);
-	sspace_max = pagesize - SUBPAGE;
-
-#ifdef MALLOC_TINY
-	assert(QUANTUM_2POW >= TINY_MIN_2POW);
-#endif
-	assert(ntbins <= QUANTUM_2POW);
-	nqbins = qspace_max >> QUANTUM_2POW;
-	ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
-	nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
-	nbins = ntbins + nqbins + ncbins + nsbins;
-
-	if (size2bin_init()) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-
-	/* Set variables according to the value of opt_chunk_2pow. */
-	chunksize = (1LU << opt_chunk_2pow);
-	chunksize_mask = chunksize - 1;
-	chunk_npages = (chunksize >> pagesize_2pow);
-	{
-		size_t header_size;
-
-		/*
-		 * Compute the header size such that it is large enough to
-		 * contain the page map.
-		 */
-		header_size = sizeof(arena_chunk_t) +
-		    (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
-		arena_chunk_header_npages = (header_size >> pagesize_2pow) +
-		    ((header_size & pagesize_mask) != 0);
-	}
-	arena_maxclass = chunksize - (arena_chunk_header_npages <<
-	    pagesize_2pow);
-
-	UTRACE(0, 0, 0);
-
-#ifdef MALLOC_STATS
-	memset(&stats_chunks, 0, sizeof(chunk_stats_t));
-#endif
-
-	/* Various sanity checks that regard configuration. */
-	assert(chunksize >= pagesize);
-
-	/* Initialize chunks data. */
-	malloc_mutex_init(&huge_mtx);
-	extent_tree_ad_new(&huge);
-#ifdef MALLOC_DSS
-	malloc_mutex_init(&dss_mtx);
-	dss_base = sbrk(0);
-	dss_prev = dss_base;
-	dss_max = dss_base;
-	extent_tree_szad_new(&dss_chunks_szad);
-	extent_tree_ad_new(&dss_chunks_ad);
-#endif
-#ifdef MALLOC_STATS
-	huge_nmalloc = 0;
-	huge_ndalloc = 0;
-	huge_allocated = 0;
-#endif
-
-	/* Initialize base allocation data structures. */
-#ifdef MALLOC_STATS
-	base_mapped = 0;
-#endif
-#ifdef MALLOC_DSS
-	/*
-	 * Allocate a base chunk here, since it doesn't actually have to be
-	 * chunk-aligned.  Doing this before allocating any other chunks allows
-	 * the use of space that would otherwise be wasted.
-	 */
-	if (opt_dss)
-		base_pages_alloc(0);
-#endif
-	base_nodes = NULL;
-	malloc_mutex_init(&base_mtx);
-
-	if (ncpus > 1) {
-		/*
-		 * For SMP systems, create twice as many arenas as there are
-		 * CPUs by default.
-		 */
-		opt_narenas_lshift++;
-	}
-
-	/* Determine how many arenas to use. */
-	narenas = ncpus;
-	if (opt_narenas_lshift > 0) {
-		if ((narenas << opt_narenas_lshift) > narenas)
-			narenas <<= opt_narenas_lshift;
-		/*
-		 * Make sure not to exceed the limits of what base_alloc() can
-		 * handle.
-		 */
-		if (narenas * sizeof(arena_t *) > chunksize)
-			narenas = chunksize / sizeof(arena_t *);
-	} else if (opt_narenas_lshift < 0) {
-		if ((narenas >> -opt_narenas_lshift) < narenas)
-			narenas >>= -opt_narenas_lshift;
-		/* Make sure there is at least one arena. */
-		if (narenas == 0)
-			narenas = 1;
-	}
-#ifdef MALLOC_BALANCE
-	assert(narenas != 0);
-	for (narenas_2pow = 0;
-	     (narenas >> (narenas_2pow + 1)) != 0;
-	     narenas_2pow++);
-#endif
-
-#ifdef NO_TLS
-	if (narenas > 1) {
-		static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
-		    23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
-		    89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
-		    151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
-		    223, 227, 229, 233, 239, 241, 251, 257, 263};
-		unsigned nprimes, parenas;
-
-		/*
-		 * Pick a prime number of hash arenas that is more than narenas
-		 * so that direct hashing of pthread_self() pointers tends to
-		 * spread allocations evenly among the arenas.
-		 */
-		assert((narenas & 1) == 0); /* narenas must be even. */
-		nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
-		parenas = primes[nprimes - 1]; /* In case not enough primes. */
-		for (i = 1; i < nprimes; i++) {
-			if (primes[i] > narenas) {
-				parenas = primes[i];
-				break;
-			}
-		}
-		narenas = parenas;
-	}
-#endif
-
-#ifndef NO_TLS
-#  ifndef MALLOC_BALANCE
-	next_arena = 0;
-#  endif
-#endif
-
-	/* Allocate and initialize arenas. */
-	arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
-	if (arenas == NULL) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-	/*
-	 * Zero the array.  In practice, this should always be pre-zeroed,
-	 * since it was just mmap()ed, but let's be sure.
-	 */
-	memset(arenas, 0, sizeof(arena_t *) * narenas);
-
-	/*
-	 * Initialize one arena here.  The rest are lazily created in
-	 * choose_arena_hard().
-	 */
-	arenas_extend(0);
-	if (arenas[0] == NULL) {
-		malloc_mutex_unlock(&init_lock);
-		return (true);
-	}
-#ifndef NO_TLS
-	/*
-	 * Assign the initial arena to the initial thread, in order to avoid
-	 * spurious creation of an extra arena if the application switches to
-	 * threaded mode.
-	 */
-	arenas_map = arenas[0];
-#endif
-	/*
-	 * Seed here for the initial thread, since choose_arena_hard() is only
-	 * called for other threads.  The seed value doesn't really matter.
-	 */
-#ifdef MALLOC_BALANCE
-	SPRN(balance, 42);
-#endif
-
-	malloc_spin_init(&arenas_lock);
-
-	malloc_initialized = true;
-	malloc_mutex_unlock(&init_lock);
-	return (false);
-}
-
-/*
- * End general internal functions.
- */
-/******************************************************************************/
-/*
- * Begin malloc(3)-compatible functions.
- */
-
-void *
-malloc(size_t size)
-{
-	void *ret;
-
-	if (malloc_init()) {
-		ret = NULL;
-		goto RETURN;
-	}
-
-	if (size == 0) {
-		if (opt_sysv == false)
-			size = 1;
-		else {
-			ret = NULL;
-			goto RETURN;
-		}
-	}
-
-	ret = imalloc(size);
-
-RETURN:
-	if (ret == NULL) {
-		if (opt_xmalloc) {
-			_malloc_message(_getprogname(),
-			    ": (malloc) Error in malloc(): out of memory\n", "",
-			    "");
-			abort();
-		}
-		errno = ENOMEM;
-	}
-
-	UTRACE(0, size, ret);
-	return (ret);
-}
-
-int
-posix_memalign(void **memptr, size_t alignment, size_t size)
-{
-	int ret;
-	void *result;
-
-	if (malloc_init())
-		result = NULL;
-	else {
-		/* Make sure that alignment is a large enough power of 2. */
-		if (((alignment - 1) & alignment) != 0
-		    || alignment < sizeof(void *)) {
-			if (opt_xmalloc) {
-				_malloc_message(_getprogname(),
-				    ": (malloc) Error in posix_memalign(): "
-				    "invalid alignment\n", "", "");
-				abort();
-			}
-			result = NULL;
-			ret = EINVAL;
-			goto RETURN;
-		}
-
-		result = ipalloc(alignment, size);
-	}
-
-	if (result == NULL) {
-		if (opt_xmalloc) {
-			_malloc_message(_getprogname(),
-			": (malloc) Error in posix_memalign(): out of memory\n",
-			"", "");
-			abort();
-		}
-		ret = ENOMEM;
-		goto RETURN;
-	}
-
-	*memptr = result;
-	ret = 0;
-
-RETURN:
-	UTRACE(0, size, result);
-	return (ret);
-}
-
-void *
-calloc(size_t num, size_t size)
-{
-	void *ret;
-	size_t num_size;
-
-	if (malloc_init()) {
-		num_size = 0;
-		ret = NULL;
-		goto RETURN;
-	}
-
-	num_size = num * size;
-	if (num_size == 0) {
-		if ((opt_sysv == false) && ((num == 0) || (size == 0)))
-			num_size = 1;
-		else {
-			ret = NULL;
-			goto RETURN;
-		}
-	/*
-	 * Try to avoid division here.  We know that it isn't possible to
-	 * overflow during multiplication if neither operand uses any of the
-	 * most significant half of the bits in a size_t.
-	 */
-	} else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
-	    && (num_size / size != num)) {
-		/* size_t overflow. */
-		ret = NULL;
-		goto RETURN;
-	}
-
-	ret = icalloc(num_size);
-
-RETURN:
-	if (ret == NULL) {
-		if (opt_xmalloc) {
-			_malloc_message(_getprogname(),
-			    ": (malloc) Error in calloc(): out of memory\n", "",
-			    "");
-			abort();
-		}
-		errno = ENOMEM;
-	}
-
-	UTRACE(0, num_size, ret);
-	return (ret);
-}
-
-void *
-realloc(void *ptr, size_t size)
-{
-	void *ret;
-
-	if (size == 0) {
-		if (opt_sysv == false)
-			size = 1;
-		else {
-			if (ptr != NULL)
-				idalloc(ptr);
-			ret = NULL;
-			goto RETURN;
-		}
-	}
-
-	if (ptr != NULL) {
-		assert(malloc_initialized);
-
-		ret = iralloc(ptr, size);
-
-		if (ret == NULL) {
-			if (opt_xmalloc) {
-				_malloc_message(_getprogname(),
-				    ": (malloc) Error in realloc(): out of "
-				    "memory\n", "", "");
-				abort();
-			}
-			errno = ENOMEM;
-		}
-	} else {
-		if (malloc_init())
-			ret = NULL;
-		else
-			ret = imalloc(size);
-
-		if (ret == NULL) {
-			if (opt_xmalloc) {
-				_malloc_message(_getprogname(),
-				    ": (malloc) Error in realloc(): out of "
-				    "memory\n", "", "");
-				abort();
-			}
-			errno = ENOMEM;
-		}
-	}
-
-RETURN:
-	UTRACE(ptr, size, ret);
-	return (ret);
-}
-
-void
-free(void *ptr)
-{
-
-	UTRACE(ptr, 0, 0);
-	if (ptr != NULL) {
-		assert(malloc_initialized);
-
-		idalloc(ptr);
-	}
-}
-
-/*
- * End malloc(3)-compatible functions.
- */
-/******************************************************************************/
-/*
- * Begin non-standard functions.
- */
-
-size_t
-malloc_usable_size(const void *ptr)
-{
-
-	assert(ptr != NULL);
-
-	return (isalloc(ptr));
-}
-
-/*
- * End non-standard functions.
- */
-/******************************************************************************/
-/*
- * Begin library-private functions.
- */
-
-/******************************************************************************/
-/*
- * Begin thread cache.
- */
-
-/*
- * We provide an unpublished interface in order to receive notifications from
- * the pthreads library whenever a thread exits.  This allows us to clean up
- * thread caches.
- */
-void
-_malloc_thread_cleanup(void)
-{
-
-#ifdef MALLOC_MAG
-	if (mag_rack != NULL) {
-		assert(mag_rack != (void *)-1);
-		mag_rack_destroy(mag_rack);
-#ifdef MALLOC_DEBUG
-		mag_rack = (void *)-1;
-#endif
-	}
-#endif
-}
-
-/*
- * The following functions are used by threading libraries for protection of
- * malloc during fork().  These functions are only called if the program is
- * running in threaded mode, so there is no need to check whether the program
- * is threaded here.
- */
-
-void
-_malloc_prefork(void)
-{
-	unsigned i;
-
-	/* Acquire all mutexes in a safe order. */
-
-	malloc_spin_lock(&arenas_lock);
-	for (i = 0; i < narenas; i++) {
-		if (arenas[i] != NULL)
-			malloc_spin_lock(&arenas[i]->lock);
-	}
-	malloc_spin_unlock(&arenas_lock);
-
-	malloc_mutex_lock(&base_mtx);
-
-	malloc_mutex_lock(&huge_mtx);
-
-#ifdef MALLOC_DSS
-	malloc_mutex_lock(&dss_mtx);
-#endif
-}
-
-void
-_malloc_postfork(void)
-{
-	unsigned i;
-
-	/* Release all mutexes, now that fork() has completed. */
-
-#ifdef MALLOC_DSS
-	malloc_mutex_unlock(&dss_mtx);
-#endif
-
-	malloc_mutex_unlock(&huge_mtx);
-
-	malloc_mutex_unlock(&base_mtx);
-
-	malloc_spin_lock(&arenas_lock);
-	for (i = 0; i < narenas; i++) {
-		if (arenas[i] != NULL)
-			malloc_spin_unlock(&arenas[i]->lock);
-	}
-	malloc_spin_unlock(&arenas_lock);
-}
-
-/*
- * End library-private functions.
- */
-/******************************************************************************/
diff --git a/lib/libjemalloc/rb.h b/lib/libjemalloc/rb.h
deleted file mode 100644
index acfe203..0000000
--- a/lib/libjemalloc/rb.h
+++ /dev/null
@@ -1,946 +0,0 @@
-/******************************************************************************
- *
- * Copyright (C) 2008 Jason Evans <jasone at FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice(s), this list of conditions and the following disclaimer
- *    unmodified other than the allowable addition of one or more
- *    copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice(s), this list of conditions and the following disclaimer in
- *    the documentation and/or other materials provided with the
- *    distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- *
- * cpp macro implementation of left-leaning red-black trees.
- *
- * Usage:
- *
- *   (Optional, see assert(3).)
- *   #define NDEBUG
- *
- *   (Required.)
- *   #include <assert.h>
- *   #include <rb.h>
- *   ...
- *
- * All operations are done non-recursively.  Parent pointers are not used, and
- * color bits are stored in the least significant bit of right-child pointers,
- * thus making node linkage as compact as is possible for red-black trees.
- *
- * Some macros use a comparison function pointer, which is expected to have the
- * following prototype:
- *
- *   int (a_cmp *)(a_type *a_node, a_type *a_other);
- *                         ^^^^^^
- *                      or a_key
- *
- * Interpretation of comparision function return values:
- *
- *   -1 : a_node <  a_other
- *    0 : a_node == a_other
- *    1 : a_node >  a_other
- *
- * In all cases, the a_node or a_key macro argument is the first argument to the
- * comparison function, which makes it possible to write comparison functions
- * that treat the first argument specially.
- *
- ******************************************************************************/
-
-#ifndef RB_H_
-#define	RB_H_
-
-//__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
-
-/* Node structure. */
-#define	rb_node(a_type)							\
-struct {								\
-    a_type *rbn_left;							\
-    a_type *rbn_right_red;						\
-}
-
-/* Root structure. */
-#define	rb_tree(a_type)							\
-struct {								\
-    a_type *rbt_root;							\
-    a_type rbt_nil;							\
-}
-
-/* Left accessors. */
-#define	rbp_left_get(a_type, a_field, a_node)				\
-    ((a_node)->a_field.rbn_left)
-#define	rbp_left_set(a_type, a_field, a_node, a_left) do {		\
-    (a_node)->a_field.rbn_left = a_left;				\
-} while (0)
-
-/* Right accessors. */
-#define	rbp_right_get(a_type, a_field, a_node)				\
-    ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red)		\
-      & ((ssize_t)-2)))
-#define	rbp_right_set(a_type, a_field, a_node, a_right) do {		\
-    (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right)	\
-      | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1)));	\
-} while (0)
-
-/* Color accessors. */
-#define	rbp_red_get(a_type, a_field, a_node)				\
-    ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red)		\
-      & ((size_t)1)))
-#define	rbp_color_set(a_type, a_field, a_node, a_red) do {		\
-    (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t)		\
-      (a_node)->a_field.rbn_right_red) & ((ssize_t)-2))			\
-      | ((ssize_t)a_red));						\
-} while (0)
-#define	rbp_red_set(a_type, a_field, a_node) do {			\
-    (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t)		\
-      (a_node)->a_field.rbn_right_red) | ((size_t)1));			\
-} while (0)
-#define	rbp_black_set(a_type, a_field, a_node) do {			\
-    (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t)		\
-      (a_node)->a_field.rbn_right_red) & ((ssize_t)-2));		\
-} while (0)
-
-/* Node initializer. */
-#define	rbp_node_new(a_type, a_field, a_tree, a_node) do {		\
-    rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil);	\
-    rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil);	\
-    rbp_red_set(a_type, a_field, (a_node));				\
-} while (0)
-
-/* Tree initializer. */
-#define	rb_new(a_type, a_field, a_tree) do {				\
-    (a_tree)->rbt_root = &(a_tree)->rbt_nil;				\
-    rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil);		\
-    rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil);			\
-} while (0)
-
-/* Tree operations. */
-#define	rbp_black_height(a_type, a_field, a_tree, r_height) do {	\
-    a_type *rbp_bh_t;							\
-    for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0;			\
-      rbp_bh_t != &(a_tree)->rbt_nil;					\
-      rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) {		\
-	if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) {		\
-	    (r_height)++;						\
-	}								\
-    }									\
-} while (0)
-
-#define	rbp_first(a_type, a_field, a_tree, a_root, r_node) do {		\
-    for ((r_node) = (a_root);						\
-      rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil;	\
-      (r_node) = rbp_left_get(a_type, a_field, (r_node))) {		\
-    }									\
-} while (0)
-
-#define	rbp_last(a_type, a_field, a_tree, a_root, r_node) do {		\
-    for ((r_node) = (a_root);						\
-      rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil;	\
-      (r_node) = rbp_right_get(a_type, a_field, (r_node))) {		\
-    }									\
-} while (0)
-
-#define	rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {	\
-    if (rbp_right_get(a_type, a_field, (a_node))			\
-      != &(a_tree)->rbt_nil) {						\
-	rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type,	\
-	  a_field, (a_node)), (r_node));				\
-    } else {								\
-	a_type *rbp_n_t = (a_tree)->rbt_root;				\
-	assert(rbp_n_t != &(a_tree)->rbt_nil);				\
-	(r_node) = &(a_tree)->rbt_nil;					\
-	while (true) {							\
-	    int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t);			\
-	    if (rbp_n_cmp < 0) {					\
-		(r_node) = rbp_n_t;					\
-		rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t);	\
-	    } else if (rbp_n_cmp > 0) {					\
-		rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t);	\
-	    } else {							\
-		break;							\
-	    }								\
-	    assert(rbp_n_t != &(a_tree)->rbt_nil);			\
-	}								\
-    }									\
-} while (0)
-
-#define	rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {	\
-    if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
-	rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type,		\
-	  a_field, (a_node)), (r_node));				\
-    } else {								\
-	a_type *rbp_p_t = (a_tree)->rbt_root;				\
-	assert(rbp_p_t != &(a_tree)->rbt_nil);				\
-	(r_node) = &(a_tree)->rbt_nil;					\
-	while (true) {							\
-	    int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t);			\
-	    if (rbp_p_cmp < 0) {					\
-		rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t);	\
-	    } else if (rbp_p_cmp > 0) {					\
-		(r_node) = rbp_p_t;					\
-		rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t);	\
-	    } else {							\
-		break;							\
-	    }								\
-	    assert(rbp_p_t != &(a_tree)->rbt_nil);			\
-	}								\
-    }									\
-} while (0)
-
-#define	rb_first(a_type, a_field, a_tree, r_node) do {			\
-    rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node));	\
-    if ((r_node) == &(a_tree)->rbt_nil) {				\
-	(r_node) = NULL;						\
-    }									\
-} while (0)
-
-#define	rb_last(a_type, a_field, a_tree, r_node) do {			\
-    rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node);	\
-    if ((r_node) == &(a_tree)->rbt_nil) {				\
-	(r_node) = NULL;						\
-    }									\
-} while (0)
-
-#define	rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {	\
-    rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node));	\
-    if ((r_node) == &(a_tree)->rbt_nil) {				\
-	(r_node) = NULL;						\
-    }									\
-} while (0)
-
-#define	rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do {	\
-    rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node));	\
-    if ((r_node) == &(a_tree)->rbt_nil) {				\
-	(r_node) = NULL;						\
-    }									\
-} while (0)
-
-#define	rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {	\
-    int rbp_se_cmp;							\
-    (r_node) = (a_tree)->rbt_root;					\
-    while ((r_node) != &(a_tree)->rbt_nil				\
-      && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) {		\
-	if (rbp_se_cmp < 0) {						\
-	    (r_node) = rbp_left_get(a_type, a_field, (r_node));		\
-	} else {							\
-	    (r_node) = rbp_right_get(a_type, a_field, (r_node));	\
-	}								\
-    }									\
-    if ((r_node) == &(a_tree)->rbt_nil) {				\
-	(r_node) = NULL;						\
-    }									\
-} while (0)
-
-/*
- * Find a match if it exists.  Otherwise, find the next greater node, if one
- * exists.
- */
-#define	rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {	\
-    a_type *rbp_ns_t = (a_tree)->rbt_root;				\
-    (r_node) = NULL;							\
-    while (rbp_ns_t != &(a_tree)->rbt_nil) {				\
-	int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t);			\
-	if (rbp_ns_cmp < 0) {						\
-	    (r_node) = rbp_ns_t;					\
-	    rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t);		\
-	} else if (rbp_ns_cmp > 0) {					\
-	    rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t);	\
-	} else {							\
-	    (r_node) = rbp_ns_t;					\
-	    break;							\
-	}								\
-    }									\
-} while (0)
-
-/*
- * Find a match if it exists.  Otherwise, find the previous lesser node, if one
- * exists.
- */
-#define	rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do {	\
-    a_type *rbp_ps_t = (a_tree)->rbt_root;				\
-    (r_node) = NULL;							\
-    while (rbp_ps_t != &(a_tree)->rbt_nil) {				\
-	int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t);			\
-	if (rbp_ps_cmp < 0) {						\
-	    rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t);		\
-	} else if (rbp_ps_cmp > 0) {					\
-	    (r_node) = rbp_ps_t;					\
-	    rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t);	\
-	} else {							\
-	    (r_node) = rbp_ps_t;					\
-	    break;							\
-	}								\
-    }									\
-} while (0)
-
-#define	rbp_rotate_left(a_type, a_field, a_node, r_node) do {		\
-    (r_node) = rbp_right_get(a_type, a_field, (a_node));		\
-    rbp_right_set(a_type, a_field, (a_node),				\
-      rbp_left_get(a_type, a_field, (r_node)));				\
-    rbp_left_set(a_type, a_field, (r_node), (a_node));			\
-} while (0)
-
-#define	rbp_rotate_right(a_type, a_field, a_node, r_node) do {		\
-    (r_node) = rbp_left_get(a_type, a_field, (a_node));			\
-    rbp_left_set(a_type, a_field, (a_node),				\
-      rbp_right_get(a_type, a_field, (r_node)));			\
-    rbp_right_set(a_type, a_field, (r_node), (a_node));			\
-} while (0)
-
-#define	rbp_lean_left(a_type, a_field, a_node, r_node) do {		\
-    bool rbp_ll_red;							\
-    rbp_rotate_left(a_type, a_field, (a_node), (r_node));		\
-    rbp_ll_red = rbp_red_get(a_type, a_field, (a_node));		\
-    rbp_color_set(a_type, a_field, (r_node), rbp_ll_red);		\
-    rbp_red_set(a_type, a_field, (a_node));				\
-} while (0)
-
-#define	rbp_lean_right(a_type, a_field, a_node, r_node) do {		\
-    bool rbp_lr_red;							\
-    rbp_rotate_right(a_type, a_field, (a_node), (r_node));		\
-    rbp_lr_red = rbp_red_get(a_type, a_field, (a_node));		\
-    rbp_color_set(a_type, a_field, (r_node), rbp_lr_red);		\
-    rbp_red_set(a_type, a_field, (a_node));				\
-} while (0)
-
-#define	rbp_move_red_left(a_type, a_field, a_node, r_node) do {		\
-    a_type *rbp_mrl_t, *rbp_mrl_u;					\
-    rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node));		\
-    rbp_red_set(a_type, a_field, rbp_mrl_t);				\
-    rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node));		\
-    rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t);		\
-    if (rbp_red_get(a_type, a_field, rbp_mrl_u)) {			\
-	rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u);	\
-	rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u);		\
-	rbp_rotate_left(a_type, a_field, (a_node), (r_node));		\
-	rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node));		\
-	if (rbp_red_get(a_type, a_field, rbp_mrl_t)) {			\
-	    rbp_black_set(a_type, a_field, rbp_mrl_t);			\
-	    rbp_red_set(a_type, a_field, (a_node));			\
-	    rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t);	\
-	    rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t);		\
-	} else {							\
-	    rbp_black_set(a_type, a_field, (a_node));			\
-	}								\
-    } else {								\
-	rbp_red_set(a_type, a_field, (a_node));				\
-	rbp_rotate_left(a_type, a_field, (a_node), (r_node));		\
-    }									\
-} while (0)
-
-#define	rbp_move_red_right(a_type, a_field, a_node, r_node) do {	\
-    a_type *rbp_mrr_t;							\
-    rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node));		\
-    if (rbp_red_get(a_type, a_field, rbp_mrr_t)) {			\
-	a_type *rbp_mrr_u, *rbp_mrr_v;					\
-	rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t);		\
-	rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u);		\
-	if (rbp_red_get(a_type, a_field, rbp_mrr_v)) {			\
-	    rbp_color_set(a_type, a_field, rbp_mrr_u,			\
-	      rbp_red_get(a_type, a_field, (a_node)));			\
-	    rbp_black_set(a_type, a_field, rbp_mrr_v);			\
-	    rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u);	\
-	    rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u);		\
-	    rbp_rotate_right(a_type, a_field, (a_node), (r_node));	\
-	    rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);	\
-	    rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);	\
-	} else {							\
-	    rbp_color_set(a_type, a_field, rbp_mrr_t,			\
-	      rbp_red_get(a_type, a_field, (a_node)));			\
-	    rbp_red_set(a_type, a_field, rbp_mrr_u);			\
-	    rbp_rotate_right(a_type, a_field, (a_node), (r_node));	\
-	    rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);	\
-	    rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);	\
-	}								\
-	rbp_red_set(a_type, a_field, (a_node));				\
-    } else {								\
-	rbp_red_set(a_type, a_field, rbp_mrr_t);			\
-	rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t);		\
-	if (rbp_red_get(a_type, a_field, rbp_mrr_t)) {			\
-	    rbp_black_set(a_type, a_field, rbp_mrr_t);			\
-	    rbp_rotate_right(a_type, a_field, (a_node), (r_node));	\
-	    rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t);	\
-	    rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t);	\
-	} else {							\
-	    rbp_rotate_left(a_type, a_field, (a_node), (r_node));	\
-	}								\
-    }									\
-} while (0)
-
-#define	rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do {		\
-    a_type rbp_i_s;							\
-    a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u;		\
-    int rbp_i_cmp = 0;							\
-    rbp_i_g = &(a_tree)->rbt_nil;					\
-    rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root);	\
-    rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil);	\
-    rbp_black_set(a_type, a_field, &rbp_i_s);				\
-    rbp_i_p = &rbp_i_s;							\
-    rbp_i_c = (a_tree)->rbt_root;					\
-    /* Iteratively search down the tree for the insertion point,      */\
-    /* splitting 4-nodes as they are encountered.  At the end of each */\
-    /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down    */\
-    /* the tree, assuming a sufficiently deep tree.                   */\
-    while (rbp_i_c != &(a_tree)->rbt_nil) {				\
-	rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c);		\
-	rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t);		\
-	if (rbp_red_get(a_type, a_field, rbp_i_t)			\
-	  && rbp_red_get(a_type, a_field, rbp_i_u)) {			\
-	    /* rbp_i_c is the top of a logical 4-node, so split it.   */\
-	    /* This iteration does not move down the tree, due to the */\
-	    /* disruptiveness of node splitting.                      */\
-	    /*                                                        */\
-	    /* Rotate right.                                          */\
-	    rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t);	\
-	    /* Pass red links up one level.                           */\
-	    rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t);		\
-	    rbp_black_set(a_type, a_field, rbp_i_u);			\
-	    if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) {	\
-		rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t);	\
-		rbp_i_c = rbp_i_t;					\
-	    } else {							\
-		/* rbp_i_c was the right child of rbp_i_p, so rotate  */\
-		/* left in order to maintain the left-leaning         */\
-		/* invariant.                                         */\
-		assert(rbp_right_get(a_type, a_field, rbp_i_p)		\
-		  == rbp_i_c);						\
-		rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t);	\
-		rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u);	\
-		if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
-		    rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u);	\
-		} else {						\
-		    assert(rbp_right_get(a_type, a_field, rbp_i_g)	\
-		      == rbp_i_p);					\
-		    rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u);	\
-		}							\
-		rbp_i_p = rbp_i_u;					\
-		rbp_i_cmp = (a_cmp)((a_node), rbp_i_p);			\
-		if (rbp_i_cmp < 0) {					\
-		    rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p);	\
-		} else {						\
-		    assert(rbp_i_cmp > 0);				\
-		    rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p);	\
-		}							\
-		continue;						\
-	    }								\
-	}								\
-	rbp_i_g = rbp_i_p;						\
-	rbp_i_p = rbp_i_c;						\
-	rbp_i_cmp = (a_cmp)((a_node), rbp_i_c);				\
-	if (rbp_i_cmp < 0) {						\
-	    rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c);		\
-	} else {							\
-	    assert(rbp_i_cmp > 0);					\
-	    rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c);		\
-	}								\
-    }									\
-    /* rbp_i_p now refers to the node under which to insert.          */\
-    rbp_node_new(a_type, a_field, a_tree, (a_node));			\
-    if (rbp_i_cmp > 0) {						\
-	rbp_right_set(a_type, a_field, rbp_i_p, (a_node));		\
-	rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t);		\
-	if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {	\
-	    rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t);		\
-	} else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
-	    rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t);		\
-	}								\
-    } else {								\
-	rbp_left_set(a_type, a_field, rbp_i_p, (a_node));		\
-    }									\
-    /* Update the root and make sure that it is black.                */\
-    (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s);	\
-    rbp_black_set(a_type, a_field, (a_tree)->rbt_root);			\
-} while (0)
-
-#define	rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do {		\
-    a_type rbp_r_s;							\
-    a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u;		\
-    int rbp_r_cmp;							\
-    rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root);	\
-    rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil);	\
-    rbp_black_set(a_type, a_field, &rbp_r_s);				\
-    rbp_r_p = &rbp_r_s;							\
-    rbp_r_c = (a_tree)->rbt_root;					\
-    rbp_r_xp = &(a_tree)->rbt_nil;					\
-    /* Iterate down the tree, but always transform 2-nodes to 3- or   */\
-    /* 4-nodes in order to maintain the invariant that the current    */\
-    /* node is not a 2-node.  This allows simple deletion once a leaf */\
-    /* is reached.  Handle the root specially though, since there may */\
-    /* be no way to convert it from a 2-node to a 3-node.             */\
-    rbp_r_cmp = (a_cmp)((a_node), rbp_r_c);				\
-    if (rbp_r_cmp < 0) {						\
-	rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);		\
-	rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);		\
-	if (rbp_red_get(a_type, a_field, rbp_r_t) == false		\
-	  && rbp_red_get(a_type, a_field, rbp_r_u) == false) {		\
-	    /* Apply standard transform to prepare for left move.     */\
-	    rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t);	\
-	    rbp_black_set(a_type, a_field, rbp_r_t);			\
-	    rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);		\
-	    rbp_r_c = rbp_r_t;						\
-	} else {							\
-	    /* Move left.                                             */\
-	    rbp_r_p = rbp_r_c;						\
-	    rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c);		\
-	}								\
-    } else {								\
-	if (rbp_r_cmp == 0) {						\
-	    assert((a_node) == rbp_r_c);				\
-	    if (rbp_right_get(a_type, a_field, rbp_r_c)			\
-	      == &(a_tree)->rbt_nil) {					\
-		/* Delete root node (which is also a leaf node).      */\
-		if (rbp_left_get(a_type, a_field, rbp_r_c)		\
-		  != &(a_tree)->rbt_nil) {				\
-		    rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t);	\
-		    rbp_right_set(a_type, a_field, rbp_r_t,		\
-		      &(a_tree)->rbt_nil);				\
-		} else {						\
-		    rbp_r_t = &(a_tree)->rbt_nil;			\
-		}							\
-		rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);	\
-	    } else {							\
-		/* This is the node we want to delete, but we will    */\
-		/* instead swap it with its successor and delete the  */\
-		/* successor.  Record enough information to do the    */\
-		/* swap later.  rbp_r_xp is the a_node's parent.      */\
-		rbp_r_xp = rbp_r_p;					\
-		rbp_r_cmp = 1; /* Note that deletion is incomplete.   */\
-	    }								\
-	}								\
-	if (rbp_r_cmp == 1) {						\
-	    if (rbp_red_get(a_type, a_field, rbp_left_get(a_type,	\
-	      a_field, rbp_right_get(a_type, a_field, rbp_r_c)))	\
-	      == false) {						\
-		rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);	\
-		if (rbp_red_get(a_type, a_field, rbp_r_t)) {		\
-		    /* Standard transform.                            */\
-		    rbp_move_red_right(a_type, a_field, rbp_r_c,	\
-		      rbp_r_t);						\
-		} else {						\
-		    /* Root-specific transform.                       */\
-		    rbp_red_set(a_type, a_field, rbp_r_c);		\
-		    rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);	\
-		    if (rbp_red_get(a_type, a_field, rbp_r_u)) {	\
-			rbp_black_set(a_type, a_field, rbp_r_u);	\
-			rbp_rotate_right(a_type, a_field, rbp_r_c,	\
-			  rbp_r_t);					\
-			rbp_rotate_left(a_type, a_field, rbp_r_c,	\
-			  rbp_r_u);					\
-			rbp_right_set(a_type, a_field, rbp_r_t,		\
-			  rbp_r_u);					\
-		    } else {						\
-			rbp_red_set(a_type, a_field, rbp_r_t);		\
-			rbp_rotate_left(a_type, a_field, rbp_r_c,	\
-			  rbp_r_t);					\
-		    }							\
-		}							\
-		rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);	\
-		rbp_r_c = rbp_r_t;					\
-	    } else {							\
-		/* Move right.                                        */\
-		rbp_r_p = rbp_r_c;					\
-		rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c);	\
-	    }								\
-	}								\
-    }									\
-    if (rbp_r_cmp != 0) {						\
-	while (true) {							\
-	    assert(rbp_r_p != &(a_tree)->rbt_nil);			\
-	    rbp_r_cmp = (a_cmp)((a_node), rbp_r_c);			\
-	    if (rbp_r_cmp < 0) {					\
-		rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c);	\
-		if (rbp_r_t == &(a_tree)->rbt_nil) {			\
-		    /* rbp_r_c now refers to the successor node to    */\
-		    /* relocate, and rbp_r_xp/a_node refer to the     */\
-		    /* context for the relocation.                    */\
-		    if (rbp_left_get(a_type, a_field, rbp_r_xp)		\
-		      == (a_node)) {					\
-			rbp_left_set(a_type, a_field, rbp_r_xp,		\
-			  rbp_r_c);					\
-		    } else {						\
-			assert(rbp_right_get(a_type, a_field,		\
-			  rbp_r_xp) == (a_node));			\
-			rbp_right_set(a_type, a_field, rbp_r_xp,	\
-			  rbp_r_c);					\
-		    }							\
-		    rbp_left_set(a_type, a_field, rbp_r_c,		\
-		      rbp_left_get(a_type, a_field, (a_node)));		\
-		    rbp_right_set(a_type, a_field, rbp_r_c,		\
-		      rbp_right_get(a_type, a_field, (a_node)));	\
-		    rbp_color_set(a_type, a_field, rbp_r_c,		\
-		      rbp_red_get(a_type, a_field, (a_node)));		\
-		    if (rbp_left_get(a_type, a_field, rbp_r_p)		\
-		      == rbp_r_c) {					\
-			rbp_left_set(a_type, a_field, rbp_r_p,		\
-			  &(a_tree)->rbt_nil);				\
-		    } else {						\
-			assert(rbp_right_get(a_type, a_field, rbp_r_p)	\
-			  == rbp_r_c);					\
-			rbp_right_set(a_type, a_field, rbp_r_p,		\
-			  &(a_tree)->rbt_nil);				\
-		    }							\
-		    break;						\
-		}							\
-		rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);	\
-		if (rbp_red_get(a_type, a_field, rbp_r_t) == false	\
-		  && rbp_red_get(a_type, a_field, rbp_r_u) == false) {	\
-		    rbp_move_red_left(a_type, a_field, rbp_r_c,		\
-		      rbp_r_t);						\
-		    if (rbp_left_get(a_type, a_field, rbp_r_p)		\
-		      == rbp_r_c) {					\
-			rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
-		    } else {						\
-			rbp_right_set(a_type, a_field, rbp_r_p,		\
-			  rbp_r_t);					\
-		    }							\
-		    rbp_r_c = rbp_r_t;					\
-		} else {						\
-		    rbp_r_p = rbp_r_c;					\
-		    rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c);	\
-		}							\
-	    } else {							\
-		/* Check whether to delete this node (it has to be    */\
-		/* the correct node and a leaf node).                 */\
-		if (rbp_r_cmp == 0) {					\
-		    assert((a_node) == rbp_r_c);			\
-		    if (rbp_right_get(a_type, a_field, rbp_r_c)		\
-		      == &(a_tree)->rbt_nil) {				\
-			/* Delete leaf node.                          */\
-			if (rbp_left_get(a_type, a_field, rbp_r_c)	\
-			  != &(a_tree)->rbt_nil) {			\
-			    rbp_lean_right(a_type, a_field, rbp_r_c,	\
-			      rbp_r_t);					\
-			    rbp_right_set(a_type, a_field, rbp_r_t,	\
-			      &(a_tree)->rbt_nil);			\
-			} else {					\
-			    rbp_r_t = &(a_tree)->rbt_nil;		\
-			}						\
-			if (rbp_left_get(a_type, a_field, rbp_r_p)	\
-			  == rbp_r_c) {					\
-			    rbp_left_set(a_type, a_field, rbp_r_p,	\
-			      rbp_r_t);					\
-			} else {					\
-			    rbp_right_set(a_type, a_field, rbp_r_p,	\
-			      rbp_r_t);					\
-			}						\
-			break;						\
-		    } else {						\
-			/* This is the node we want to delete, but we */\
-			/* will instead swap it with its successor    */\
-			/* and delete the successor.  Record enough   */\
-			/* information to do the swap later.          */\
-			/* rbp_r_xp is a_node's parent.               */\
-			rbp_r_xp = rbp_r_p;				\
-		    }							\
-		}							\
-		rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c);	\
-		rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t);	\
-		if (rbp_red_get(a_type, a_field, rbp_r_u) == false) {	\
-		    rbp_move_red_right(a_type, a_field, rbp_r_c,	\
-		      rbp_r_t);						\
-		    if (rbp_left_get(a_type, a_field, rbp_r_p)		\
-		      == rbp_r_c) {					\
-			rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
-		    } else {						\
-			rbp_right_set(a_type, a_field, rbp_r_p,		\
-			  rbp_r_t);					\
-		    }							\
-		    rbp_r_c = rbp_r_t;					\
-		} else {						\
-		    rbp_r_p = rbp_r_c;					\
-		    rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c);	\
-		}							\
-	    }								\
-	}								\
-    }									\
-    /* Update root.                                                   */\
-    (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s);	\
-} while (0)
-
-/*
- * The rb_wrap() macro provides a convenient way to wrap functions around the
- * cpp macros.  The main benefits of wrapping are that 1) repeated macro
- * expansion can cause code bloat, especially for rb_{insert,remove)(), and
- * 2) type, linkage, comparison functions, etc. need not be specified at every
- * call point.
- */
-
-#define	rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp)	\
-a_attr void								\
-a_prefix##new(a_tree_type *tree) {					\
-    rb_new(a_type, a_field, tree);					\
-}									\
-a_attr a_type *								\
-a_prefix##first(a_tree_type *tree) {					\
-    a_type *ret;							\
-    rb_first(a_type, a_field, tree, ret);				\
-    return (ret);							\
-}									\
-a_attr a_type *								\
-a_prefix##last(a_tree_type *tree) {					\
-    a_type *ret;							\
-    rb_last(a_type, a_field, tree, ret);				\
-    return (ret);							\
-}									\
-a_attr a_type *								\
-a_prefix##next(a_tree_type *tree, a_type *node) {			\
-    a_type *ret;							\
-    rb_next(a_type, a_field, a_cmp, tree, node, ret);			\
-    return (ret);							\
-}									\
-a_attr a_type *								\
-a_prefix##prev(a_tree_type *tree, a_type *node) {			\
-    a_type *ret;							\
-    rb_prev(a_type, a_field, a_cmp, tree, node, ret);			\
-    return (ret);							\
-}									\
-a_attr a_type *								\
-a_prefix##search(a_tree_type *tree, a_type *key) {			\
-    a_type *ret;							\
-    rb_search(a_type, a_field, a_cmp, tree, key, ret);			\
-    return (ret);							\
-}									\
-a_attr a_type *								\
-a_prefix##nsearch(a_tree_type *tree, a_type *key) {			\
-    a_type *ret;							\
-    rb_nsearch(a_type, a_field, a_cmp, tree, key, ret);			\
-    return (ret);							\
-}									\
-a_attr a_type *								\
-a_prefix##psearch(a_tree_type *tree, a_type *key) {			\
-    a_type *ret;							\
-    rb_psearch(a_type, a_field, a_cmp, tree, key, ret);			\
-    return (ret);							\
-}									\
-a_attr void								\
-a_prefix##insert(a_tree_type *tree, a_type *node) {			\
-    rb_insert(a_type, a_field, a_cmp, tree, node);			\
-}									\
-a_attr void								\
-a_prefix##remove(a_tree_type *tree, a_type *node) {			\
-    rb_remove(a_type, a_field, a_cmp, tree, node);			\
-}
-
-/*
- * The iterators simulate recursion via an array of pointers that store the
- * current path.  This is critical to performance, since a series of calls to
- * rb_{next,prev}() would require time proportional to (n lg n), whereas this
- * implementation only requires time proportional to (n).
- *
- * Since the iterators cache a path down the tree, any tree modification may
- * cause the cached path to become invalid.  In order to continue iteration,
- * use something like the following sequence:
- *
- *   {
- *       a_type *node, *tnode;
- *
- *       rb_foreach_begin(a_type, a_field, a_tree, node) {
- *           ...
- *           rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
- *           rb_remove(a_type, a_field, a_cmp, a_tree, node);
- *           rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
- *           ...
- *       } rb_foreach_end(a_type, a_field, a_tree, node)
- *   }
- *
- * Note that this idiom is not advised if every iteration modifies the tree,
- * since in that case there is no algorithmic complexity improvement over a
- * series of rb_{next,prev}() calls, thus making the setup overhead wasted
- * effort.
- */
-
-#define	rb_foreach_begin(a_type, a_field, a_tree, a_var) {		\
-    /* Compute the maximum possible tree depth (3X the black height). */\
-    unsigned rbp_f_height;						\
-    rbp_black_height(a_type, a_field, a_tree, rbp_f_height);		\
-    rbp_f_height *= 3;							\
-    {									\
-	/* Initialize the path to contain the left spine.             */\
-	a_type *rbp_f_path[rbp_f_height];				\
-	a_type *rbp_f_node;						\
-	bool rbp_f_synced = false;					\
-	unsigned rbp_f_depth = 0;					\
-	if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {			\
-	    rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root;		\
-	    rbp_f_depth++;						\
-	    while ((rbp_f_node = rbp_left_get(a_type, a_field,		\
-	      rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {	\
-		rbp_f_path[rbp_f_depth] = rbp_f_node;			\
-		rbp_f_depth++;						\
-	    }								\
-	}								\
-	/* While the path is non-empty, iterate.                      */\
-	while (rbp_f_depth > 0) {					\
-	    (a_var) = rbp_f_path[rbp_f_depth-1];
-
-/* Only use if modifying the tree during iteration. */
-#define	rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node)		\
-	    /* Re-initialize the path to contain the path to a_node.  */\
-	    rbp_f_depth = 0;						\
-	    if (a_node != NULL) {					\
-		if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {		\
-		    rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root;	\
-		    rbp_f_depth++;					\
-		    rbp_f_node = rbp_f_path[0];				\
-		    while (true) {					\
-			int rbp_f_cmp = (a_cmp)((a_node),		\
-			  rbp_f_path[rbp_f_depth-1]);			\
-			if (rbp_f_cmp < 0) {				\
-			    rbp_f_node = rbp_left_get(a_type, a_field,	\
-			      rbp_f_path[rbp_f_depth-1]);		\
-			} else if (rbp_f_cmp > 0) {			\
-			    rbp_f_node = rbp_right_get(a_type, a_field,	\
-			      rbp_f_path[rbp_f_depth-1]);		\
-			} else {					\
-			    break;					\
-			}						\
-			assert(rbp_f_node != &(a_tree)->rbt_nil);	\
-			rbp_f_path[rbp_f_depth] = rbp_f_node;		\
-			rbp_f_depth++;					\
-		    }							\
-		}							\
-	    }								\
-	    rbp_f_synced = true;
-
-#define	rb_foreach_end(a_type, a_field, a_tree, a_var)			\
-	    if (rbp_f_synced) {						\
-		rbp_f_synced = false;					\
-		continue;						\
-	    }								\
-	    /* Find the successor.                                    */\
-	    if ((rbp_f_node = rbp_right_get(a_type, a_field,		\
-	      rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {	\
-	        /* The successor is the left-most node in the right   */\
-		/* subtree.                                           */\
-		rbp_f_path[rbp_f_depth] = rbp_f_node;			\
-		rbp_f_depth++;						\
-		while ((rbp_f_node = rbp_left_get(a_type, a_field,	\
-		  rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) {	\
-		    rbp_f_path[rbp_f_depth] = rbp_f_node;		\
-		    rbp_f_depth++;					\
-		}							\
-	    } else {							\
-		/* The successor is above the current node.  Unwind   */\
-		/* until a left-leaning edge is removed from the      */\
-		/* path, or the path is empty.                        */\
-		for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) {	\
-		    if (rbp_left_get(a_type, a_field,			\
-		      rbp_f_path[rbp_f_depth-1])			\
-		      == rbp_f_path[rbp_f_depth]) {			\
-			break;						\
-		    }							\
-		}							\
-	    }								\
-	}								\
-    }									\
-}
-
-#define	rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) {	\
-    /* Compute the maximum possible tree depth (3X the black height). */\
-    unsigned rbp_fr_height;						\
-    rbp_black_height(a_type, a_field, a_tree, rbp_fr_height);		\
-    rbp_fr_height *= 3;							\
-    {									\
-	/* Initialize the path to contain the right spine.            */\
-	a_type *rbp_fr_path[rbp_fr_height];				\
-	a_type *rbp_fr_node;						\
-	bool rbp_fr_synced = false;					\
-	unsigned rbp_fr_depth = 0;					\
-	if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {			\
-	    rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root;		\
-	    rbp_fr_depth++;						\
-	    while ((rbp_fr_node = rbp_right_get(a_type, a_field,	\
-	      rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {	\
-		rbp_fr_path[rbp_fr_depth] = rbp_fr_node;		\
-		rbp_fr_depth++;						\
-	    }								\
-	}								\
-	/* While the path is non-empty, iterate.                      */\
-	while (rbp_fr_depth > 0) {					\
-	    (a_var) = rbp_fr_path[rbp_fr_depth-1];
-
-/* Only use if modifying the tree during iteration. */
-#define	rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node)	\
-	    /* Re-initialize the path to contain the path to a_node.  */\
-	    rbp_fr_depth = 0;						\
-	    if (a_node != NULL) {					\
-		if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) {		\
-		    rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root;	\
-		    rbp_fr_depth++;					\
-		    rbp_fr_node = rbp_fr_path[0];			\
-		    while (true) {					\
-			int rbp_fr_cmp = (a_cmp)((a_node),		\
-			  rbp_fr_path[rbp_fr_depth-1]);			\
-			if (rbp_fr_cmp < 0) {				\
-			    rbp_fr_node = rbp_left_get(a_type, a_field,	\
-			      rbp_fr_path[rbp_fr_depth-1]);		\
-			} else if (rbp_fr_cmp > 0) {			\
-			    rbp_fr_node = rbp_right_get(a_type, a_field,\
-			      rbp_fr_path[rbp_fr_depth-1]);		\
-			} else {					\
-			    break;					\
-			}						\
-			assert(rbp_fr_node != &(a_tree)->rbt_nil);	\
-			rbp_fr_path[rbp_fr_depth] = rbp_fr_node;	\
-			rbp_fr_depth++;					\
-		    }							\
-		}							\
-	    }								\
-	    rbp_fr_synced = true;
-
-#define	rb_foreach_reverse_end(a_type, a_field, a_tree, a_var)		\
-	    if (rbp_fr_synced) {					\
-		rbp_fr_synced = false;					\
-		continue;						\
-	    }								\
-	    if (rbp_fr_depth == 0) {					\
-		/* rb_foreach_reverse_sync() was called with a NULL   */\
-		/* a_node.                                            */\
-		break;							\
-	    }								\
-	    /* Find the predecessor.                                  */\
-	    if ((rbp_fr_node = rbp_left_get(a_type, a_field,		\
-	      rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {	\
-	        /* The predecessor is the right-most node in the left */\
-		/* subtree.                                           */\
-		rbp_fr_path[rbp_fr_depth] = rbp_fr_node;		\
-		rbp_fr_depth++;						\
-		while ((rbp_fr_node = rbp_right_get(a_type, a_field,	\
-		  rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
-		    rbp_fr_path[rbp_fr_depth] = rbp_fr_node;		\
-		    rbp_fr_depth++;					\
-		}							\
-	    } else {							\
-		/* The predecessor is above the current node.  Unwind */\
-		/* until a right-leaning edge is removed from the     */\
-		/* path, or the path is empty.                        */\
-		for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
-		    if (rbp_right_get(a_type, a_field,			\
-		      rbp_fr_path[rbp_fr_depth-1])			\
-		      == rbp_fr_path[rbp_fr_depth]) {			\
-			break;						\
-		    }							\
-		}							\
-	    }								\
-	}								\
-    }									\
-}
-
-#endif /* RB_H_ */



More information about the varnish-commit mailing list