[master] f3b856b Drop embedded jemalloc
Tollef Fog Heen
tfheen at varnish-cache.org
Wed Jun 12 12:06:16 CEST 2013
commit f3b856b8f6644b5e0d5f2ca2af1ea8c6bc9ec365
Author: Tollef Fog Heen <tfheen at varnish-software.com>
Date: Wed Jun 12 12:00:34 2013 +0200
Drop embedded jemalloc
The embedded jemalloc we ship is outdated and jemalloc is now
generally available in distributions, so stop shipping our own copy.
diff --git a/configure.ac b/configure.ac
index f49f3fe..3c9add4 100644
--- a/configure.ac
+++ b/configure.ac
@@ -230,7 +230,6 @@ fi
CFLAGS="${save_CFLAGS}"
# Use jemalloc on Linux
-JEMALLOC_SUBDIR=
JEMALLOC_LDADD=
AC_ARG_WITH([jemalloc],
[AS_HELP_STRING([--with-jemalloc],
@@ -243,13 +242,10 @@ case $target in
if test "x$with_jemalloc" != xno; then
AC_CHECK_LIB([jemalloc], [malloc_conf],
[JEMALLOC_LDADD="-ljemalloc"],
- [AC_MSG_NOTICE([No system jemalloc found, using bundled version])
- JEMALLOC_SUBDIR=libjemalloc
- JEMALLOC_LDADD='$(top_builddir)/lib/libjemalloc/libjemalloc_mt.la'])
+ [AC_MSG_WARN([No system jemalloc found, using system malloc])])
fi
;;
esac
-AC_SUBST(JEMALLOC_SUBDIR)
AC_SUBST(JEMALLOC_LDADD)
# Userland slab allocator, available only on Solaris
@@ -598,7 +594,6 @@ AC_CONFIG_FILES([
lib/libvmod_debug/Makefile
lib/libvmod_std/Makefile
lib/libvmod_directors/Makefile
- lib/libjemalloc/Makefile
man/Makefile
redhat/Makefile
varnishapi.pc
diff --git a/lib/Makefile.am b/lib/Makefile.am
index 094f42e..77c5ac5 100644
--- a/lib/Makefile.am
+++ b/lib/Makefile.am
@@ -8,8 +8,7 @@ SUBDIRS = \
libvgz \
libvmod_debug \
libvmod_std \
- libvmod_directors \
- @JEMALLOC_SUBDIR@
+ libvmod_directors
DIST_SUBDIRS = \
libvarnishcompat \
@@ -19,5 +18,4 @@ DIST_SUBDIRS = \
libvgz \
libvmod_debug \
libvmod_std \
- libvmod_directors \
- libjemalloc
+ libvmod_directors
diff --git a/lib/libjemalloc/Makefile.am b/lib/libjemalloc/Makefile.am
deleted file mode 100644
index 63f5c7a..0000000
--- a/lib/libjemalloc/Makefile.am
+++ /dev/null
@@ -1,18 +0,0 @@
-# See source code comments to avoid memory leaks when enabling MALLOC_MAG.
-#CPPFLAGS = -DMALLOC_PRODUCTION -DMALLOC_MAG
-AM_CPPFLAGS = -DMALLOC_PRODUCTION
-
-#all: libjemalloc.so.0 libjemalloc_mt.so.0
-
-noinst_LTLIBRARIES = libjemalloc_mt.la
-
-libjemalloc_mt_la_LIBADD = ${PTHREAD_LIBS}
-libjemalloc_mt_la_LDFLAGS = -static
-libjemalloc_mt_la_CFLAGS = -D__isthreaded=true
-
-libjemalloc_mt_la_SOURCES = jemalloc_linux.c \
- rb.h
-
-EXTRA_DIST = malloc.3 \
- malloc.c \
- README
diff --git a/lib/libjemalloc/README b/lib/libjemalloc/README
deleted file mode 100644
index 5b80997..0000000
--- a/lib/libjemalloc/README
+++ /dev/null
@@ -1,55 +0,0 @@
-This is a minimal-effort stand-alone jemalloc distribution for Linux. The main
-rough spots are:
-
-* __isthreaded must be hard-coded, since the pthreads library really needs to
- be involved in order to toggle it at run time. Therefore, this distribution
- builds two separate libraries:
-
- + libjemalloc_mt.so.0 : Use for multi-threaded applications.
- + libjemalloc.so.0 : Use for single-threaded applications.
-
- Both libraries link against libpthread, though with a bit more code hacking,
- this dependency could be removed for the single-threaded version.
-
-* MALLOC_MAG (thread-specific caching, using magazines) is disabled, because
- special effort is required to avoid memory leaks when it is enabled. To make
- cleanup automatic, we would need help from the pthreads library. If you
- enable MALLOC_MAG, be sure to call _malloc_thread_cleanup() in each thread
- just before it exits.
-
-* The code that determines the number of CPUs is sketchy. The trouble is that
- we must avoid any memory allocation during early initialization.
-
-In order to build:
-
- make
-
-This generates two shared libraries, which you can either link against, or
-pre-load.
-
-Linking and running, where /path/to is the path to libjemalloc (-lpthread
-required even for libjemalloc.so):
-
- gcc app.o -o app -L/path/to -ljemalloc_mt -lpthread
- LD_LIBRARY_PATH=/path/to app
-
-Pre-loading:
-
- LD_PRELOAD=/path/to/libjemalloc_mt.so.0 app
-
-jemalloc has a lot of run-time tuning options. See the man page for details:
-
- nroff -man malloc.3 | less
-
-In particular, take a look at the B, F, and N options. If you enable
-MALLOC_MAG, look at the G and R options.
-
-If your application is crashing, or performance seems to be lacking, enable
-assertions and statistics gathering by removing MALLOC_PRODUCTION from CPPFLAGS
-in the Makefile. In order to print a statistics summary at program exit, run
-your application like:
-
- LD_PRELOAD=/path/to/libjemalloc_mt.so.0 MALLOC_OPTIONS=P app
-
-Please contact Jason Evans <jasone at canonware.com> with questions, comments, bug
-reports, etc.
diff --git a/lib/libjemalloc/jemalloc_linux.c b/lib/libjemalloc/jemalloc_linux.c
deleted file mode 100644
index 170777b..0000000
--- a/lib/libjemalloc/jemalloc_linux.c
+++ /dev/null
@@ -1,5696 +0,0 @@
-/*-
- * Copyright (C) 2006-2008 Jason Evans <jasone at FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice(s), this list of conditions and the following disclaimer as
- * the first lines of this file unmodified other than the possible
- * addition of one or more copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice(s), this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- *******************************************************************************
- *
- * This allocator implementation is designed to provide scalable performance
- * for multi-threaded programs on multi-processor systems. The following
- * features are included for this purpose:
- *
- * + Multiple arenas are used if there are multiple CPUs, which reduces lock
- * contention and cache sloshing.
- *
- * + Thread-specific caching is used if there are multiple threads, which
- * reduces the amount of locking.
- *
- * + Cache line sharing between arenas is avoided for internal data
- * structures.
- *
- * + Memory is managed in chunks and runs (chunks can be split into runs),
- * rather than as individual pages. This provides a constant-time
- * mechanism for associating allocations with particular arenas.
- *
- * Allocation requests are rounded up to the nearest size class, and no record
- * of the original request size is maintained. Allocations are broken into
- * categories according to size class. Assuming runtime defaults, 4 kB pages
- * and a 16 byte quantum on a 32-bit system, the size classes in each category
- * are as follows:
- *
- * |=======================================|
- * | Category | Subcategory | Size |
- * |=======================================|
- * | Small | Tiny | 2 |
- * | | | 4 |
- * | | | 8 |
- * | |------------------+---------|
- * | | Quantum-spaced | 16 |
- * | | | 32 |
- * | | | 48 |
- * | | | ... |
- * | | | 96 |
- * | | | 112 |
- * | | | 128 |
- * | |------------------+---------|
- * | | Cacheline-spaced | 192 |
- * | | | 256 |
- * | | | 320 |
- * | | | 384 |
- * | | | 448 |
- * | | | 512 |
- * | |------------------+---------|
- * | | Sub-page | 760 |
- * | | | 1024 |
- * | | | 1280 |
- * | | | ... |
- * | | | 3328 |
- * | | | 3584 |
- * | | | 3840 |
- * |=======================================|
- * | Large | 4 kB |
- * | | 8 kB |
- * | | 12 kB |
- * | | ... |
- * | | 1012 kB |
- * | | 1016 kB |
- * | | 1020 kB |
- * |=======================================|
- * | Huge | 1 MB |
- * | | 2 MB |
- * | | 3 MB |
- * | | ... |
- * |=======================================|
- *
- * A different mechanism is used for each category:
- *
- * Small : Each size class is segregated into its own set of runs. Each run
- * maintains a bitmap of which regions are free/allocated.
- *
- * Large : Each allocation is backed by a dedicated run. Metadata are stored
- * in the associated arena chunk header maps.
- *
- * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
- * Metadata are stored in a separate red-black tree.
- *
- *******************************************************************************
- */
-
-/*
- * Set to false if single-threaded. Even better, rip out all of the code that
- * doesn't get used if __isthreaded is false, so that libpthread isn't
- * necessary.
- */
-#ifndef __isthreaded
-# define __isthreaded true
-#endif
-
-/*
- * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
- * defaults the A and J runtime options to off. These settings are appropriate
- * for production systems.
- */
-/* #define MALLOC_PRODUCTION */
-
-#ifndef MALLOC_PRODUCTION
- /*
- * MALLOC_DEBUG enables assertions and other sanity checks, and disables
- * inline functions.
- */
-# define MALLOC_DEBUG
-
- /* MALLOC_STATS enables statistics calculation. */
-# define MALLOC_STATS
-#endif
-
-/*
- * MALLOC_TINY enables support for tiny objects, which are smaller than one
- * quantum.
- */
-#define MALLOC_TINY
-
-/*
- * MALLOC_MAG enables a magazine-based thread-specific caching layer for small
- * objects. This makes it possible to allocate/deallocate objects without any
- * locking when the cache is in the steady state.
- *
- * If MALLOC_MAG is enabled, make sure that _malloc_thread_cleanup() is called
- * by each thread just before it exits.
- */
-/* #define MALLOC_MAG */
-
-/*
- * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
- * re-balances arena load if exponentially averaged contention exceeds a
- * certain threshold.
- */
-#define MALLOC_BALANCE
-
-/*
- * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
- * segment (DSS). In an ideal world, this functionality would be completely
- * unnecessary, but we are burdened by history and the lack of resource limits
- * for anonymous mapped memory.
- */
-/* #define MALLOC_DSS */
-
-#define _GNU_SOURCE /* For mremap(2). */
-#define issetugid() 0
-#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
-
-/* __FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 182225 2008-08-27 02:00:53Z jasone $"); */
-
-#include <sys/mman.h>
-#include <sys/param.h>
-#include <sys/time.h>
-#include <sys/types.h>
-#include <sys/sysctl.h>
-#include <sys/uio.h>
-
-#include <errno.h>
-#include <limits.h>
-#ifndef SIZE_T_MAX
-# define SIZE_T_MAX SIZE_MAX
-#endif
-#include <pthread.h>
-#include <sched.h>
-#include <stdarg.h>
-#include <stdbool.h>
-#include <stdio.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-#include <unistd.h>
-#include <fcntl.h>
-#include <pthread.h>
-
-#include "rb.h"
-
-/*
- * Prevent gcc from complaining about unused parameters. Added directly
- * here instead of including ansidecl.h to save a build dependency on
- * binutils-dev.
- */
-#if __GNUC__ >= 3
-#ifndef ATTRIBUTE_UNUSED
-#define ATTRIBUTE_UNUSED __attribute__ ((__unused__))
-#endif /* ATTRIBUTE_UNUSED */
-#else
-#define ATTRIBUTE_UNUSED
-#endif
-
-#ifdef MALLOC_DEBUG
- /* Disable inlining to make debugging easier. */
-# define inline
-#endif
-
-/* Size of stack-allocated buffer passed to strerror_r(). */
-#define STRERROR_BUF 64
-
-/*
- * The const_size2bin table is sized according to PAGESIZE_2POW, but for
- * correctness reasons, we never assume that
- * (pagesize == (1U << * PAGESIZE_2POW)).
- *
- * Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
- */
-#ifdef __i386__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 2
-# define CPU_SPINWAIT __asm__ volatile("pause")
-#endif
-#ifdef __ia64__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-#endif
-#ifdef __alpha__
-# define PAGESIZE_2POW 13
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-# define NO_TLS
-#endif
-#ifdef __sparc__
-# define PAGESIZE_2POW 13
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-# define NO_TLS
-#endif
-#ifdef __amd64__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-# define CPU_SPINWAIT __asm__ volatile("pause")
-#endif
-#ifdef __arm__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 3
-# define SIZEOF_PTR_2POW 2
-# define NO_TLS
-#endif
-#ifdef __mips__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 3
-# define SIZEOF_PTR_2POW 2
-# define NO_TLS
-#endif
-#ifdef __powerpc__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 2
-#endif
-#ifdef __s390__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 2
-#endif
-#ifdef __s390x__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-#endif
-#ifdef __sh__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 3
-# define SIZEOF_PTR_2POW 2
-# define NO_TLS
-#endif
-
-#define QUANTUM ((size_t)(1U << QUANTUM_2POW))
-#define QUANTUM_MASK (QUANTUM - 1)
-
-#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
-
-/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
-#ifndef SIZEOF_INT_2POW
-# define SIZEOF_INT_2POW 2
-#endif
-
-/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
-#if (!defined(PIC) && !defined(NO_TLS))
-# define NO_TLS
-#endif
-
-#ifdef NO_TLS
- /* MALLOC_MAG requires TLS. */
-# ifdef MALLOC_MAG
-# undef MALLOC_MAG
-# endif
- /* MALLOC_BALANCE requires TLS. */
-# ifdef MALLOC_BALANCE
-# undef MALLOC_BALANCE
-# endif
-#endif
-
-/*
- * Size and alignment of memory chunks that are allocated by the OS's virtual
- * memory system.
- */
-#define CHUNK_2POW_DEFAULT 20
-
-/* Maximum number of dirty pages per arena. */
-#define DIRTY_MAX_DEFAULT (1U << 9)
-
-/*
- * Maximum size of L1 cache line. This is used to avoid cache line aliasing.
- * In addition, this controls the spacing of cacheline-spaced size classes.
- */
-#define CACHELINE_2POW 6
-#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
-#define CACHELINE_MASK (CACHELINE - 1)
-
-/*
- * Subpages are an artificially designated partitioning of pages. Their only
- * purpose is to support subpage-spaced size classes.
- *
- * There must be at least 4 subpages per page, due to the way size classes are
- * handled.
- */
-#define SUBPAGE_2POW 8
-#define SUBPAGE ((size_t)(1U << SUBPAGE_2POW))
-#define SUBPAGE_MASK (SUBPAGE - 1)
-
-#ifdef MALLOC_TINY
- /* Smallest size class to support. */
-# define TINY_MIN_2POW 1
-#endif
-
-/*
- * Maximum size class that is a multiple of the quantum, but not (necessarily)
- * a power of 2. Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define QSPACE_MAX_2POW_DEFAULT 7
-
-/*
- * Maximum size class that is a multiple of the cacheline, but not (necessarily)
- * a power of 2. Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define CSPACE_MAX_2POW_DEFAULT 9
-
-/*
- * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
- * as small as possible such that this setting is still honored, without
- * violating other constraints. The goal is to make runs as small as possible
- * without exceeding a per run external fragmentation threshold.
- *
- * We use binary fixed point math for overhead computations, where the binary
- * point is implicitly RUN_BFP bits to the left.
- *
- * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
- * honored for some/all object sizes, since there is one bit of header overhead
- * per object (plus a constant). This constraint is relaxed (ignored) for runs
- * that are so small that the per-region overhead is greater than:
- *
- * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
- */
-#define RUN_BFP 12
-/* \/ Implicit binary fixed point. */
-#define RUN_MAX_OVRHD 0x0000003dU
-#define RUN_MAX_OVRHD_RELAX 0x00001800U
-
-/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
-#define RUN_MAX_SMALL (12 * pagesize)
-
-/*
- * Hyper-threaded CPUs may need a special instruction inside spin loops in
- * order to yield to another virtual CPU. If no such instruction is defined
- * above, make CPU_SPINWAIT a no-op.
- */
-#ifndef CPU_SPINWAIT
-# define CPU_SPINWAIT
-#endif
-
-/*
- * Adaptive spinning must eventually switch to blocking, in order to avoid the
- * potential for priority inversion deadlock. Backing off past a certain point
- * can actually waste time.
- */
-#define SPIN_LIMIT_2POW 11
-
-/*
- * Conversion from spinning to blocking is expensive; we use (1U <<
- * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
- * worst-case spinning.
- */
-#define BLOCK_COST_2POW 4
-
-#ifdef MALLOC_MAG
- /*
- * Default magazine size, in bytes. max_rounds is calculated to make
- * optimal use of the space, leaving just enough room for the magazine
- * header.
- */
-# define MAG_SIZE_2POW_DEFAULT 9
-#endif
-
-#ifdef MALLOC_BALANCE
- /*
- * We use an exponential moving average to track recent lock contention,
- * where the size of the history window is N, and alpha=2/(N+1).
- *
- * Due to integer math rounding, very small values here can cause
- * substantial degradation in accuracy, thus making the moving average decay
- * faster than it would with precise calculation.
- */
-# define BALANCE_ALPHA_INV_2POW 9
-
- /*
- * Threshold value for the exponential moving contention average at which to
- * re-assign a thread.
- */
-# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
-#endif
-
-/******************************************************************************/
-
-typedef pthread_mutex_t malloc_mutex_t;
-typedef pthread_mutex_t malloc_spinlock_t;
-
-/* Set to true once the allocator has been initialized. */
-static bool malloc_initialized = false;
-
-/* Used to avoid initialization races. */
-static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
-
-/******************************************************************************/
-/*
- * Statistics data structures.
- */
-
-#ifdef MALLOC_STATS
-
-typedef struct malloc_bin_stats_s malloc_bin_stats_t;
-struct malloc_bin_stats_s {
- /*
- * Number of allocation requests that corresponded to the size of this
- * bin.
- */
- uint64_t nrequests;
-
-#ifdef MALLOC_MAG
- /* Number of magazine reloads from this bin. */
- uint64_t nmags;
-#endif
-
- /* Total number of runs created for this bin's size class. */
- uint64_t nruns;
-
- /*
- * Total number of runs reused by extracting them from the runs tree for
- * this bin's size class.
- */
- uint64_t reruns;
-
- /* High-water mark for this bin. */
- unsigned long highruns;
-
- /* Current number of runs in this bin. */
- unsigned long curruns;
-};
-
-typedef struct arena_stats_s arena_stats_t;
-struct arena_stats_s {
- /* Number of bytes currently mapped. */
- size_t mapped;
-
- /*
- * Total number of purge sweeps, total number of madvise calls made,
- * and total pages purged in order to keep dirty unused memory under
- * control.
- */
- uint64_t npurge;
- uint64_t nmadvise;
- uint64_t purged;
-
- /* Per-size-category statistics. */
- size_t allocated_small;
- uint64_t nmalloc_small;
- uint64_t ndalloc_small;
-
- size_t allocated_large;
- uint64_t nmalloc_large;
- uint64_t ndalloc_large;
-
-#ifdef MALLOC_BALANCE
- /* Number of times this arena reassigned a thread due to contention. */
- uint64_t nbalance;
-#endif
-};
-
-typedef struct chunk_stats_s chunk_stats_t;
-struct chunk_stats_s {
- /* Number of chunks that were allocated. */
- uint64_t nchunks;
-
- /* High-water mark for number of chunks allocated. */
- unsigned long highchunks;
-
- /*
- * Current number of chunks allocated. This value isn't maintained for
- * any other purpose, so keep track of it in order to be able to set
- * highchunks.
- */
- unsigned long curchunks;
-};
-
-#endif /* #ifdef MALLOC_STATS */
-
-/******************************************************************************/
-/*
- * Extent data structures.
- */
-
-/* Tree of extents. */
-typedef struct extent_node_s extent_node_t;
-struct extent_node_s {
-#ifdef MALLOC_DSS
- /* Linkage for the size/address-ordered tree. */
- rb_node(extent_node_t) link_szad;
-#endif
-
- /* Linkage for the address-ordered tree. */
- rb_node(extent_node_t) link_ad;
-
- /* Pointer to the extent that this tree node is responsible for. */
- void *addr;
-
- /* Total region size. */
- size_t size;
-};
-typedef rb_tree(extent_node_t) extent_tree_t;
-
-/******************************************************************************/
-/*
- * Arena data structures.
- */
-
-typedef struct arena_s arena_t;
-typedef struct arena_bin_s arena_bin_t;
-
-/* Each element of the chunk map corresponds to one page within the chunk. */
-typedef struct arena_chunk_map_s arena_chunk_map_t;
-struct arena_chunk_map_s {
- /*
- * Linkage for run trees. There are two disjoint uses:
- *
- * 1) arena_t's runs_avail tree.
- * 2) arena_run_t conceptually uses this linkage for in-use non-full
- * runs, rather than directly embedding linkage.
- */
- rb_node(arena_chunk_map_t) link;
-
- /*
- * Run address (or size) and various flags are stored together. The bit
- * layout looks like (assuming 32-bit system):
- *
- * ???????? ???????? ????---- ---kdzla
- *
- * ? : Unallocated: Run address for first/last pages, unset for internal
- * pages.
- * Small: Run address.
- * Large: Run size for first page, unset for trailing pages.
- * - : Unused.
- * k : key?
- * d : dirty?
- * z : zeroed?
- * l : large?
- * a : allocated?
- *
- * Following are example bit patterns for the three types of runs.
- *
- * r : run address
- * s : run size
- * x : don't care
- * - : 0
- * [dzla] : bit set
- *
- * Unallocated:
- * ssssssss ssssssss ssss---- --------
- * xxxxxxxx xxxxxxxx xxxx---- ----d---
- * ssssssss ssssssss ssss---- -----z--
- *
- * Small:
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- *
- * Large:
- * ssssssss ssssssss ssss---- ------la
- * -------- -------- -------- ------la
- * -------- -------- -------- ------la
- */
- size_t bits;
-#define CHUNK_MAP_KEY ((size_t)0x10U)
-#define CHUNK_MAP_DIRTY ((size_t)0x08U)
-#define CHUNK_MAP_ZEROED ((size_t)0x04U)
-#define CHUNK_MAP_LARGE ((size_t)0x02U)
-#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
-};
-typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
-typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
-
-/* Arena chunk header. */
-typedef struct arena_chunk_s arena_chunk_t;
-struct arena_chunk_s {
- /* Arena that owns the chunk. */
- arena_t *arena;
-
- /* Linkage for the arena's chunks_dirty tree. */
- rb_node(arena_chunk_t) link_dirty;
-
- /* Number of dirty pages. */
- size_t ndirty;
-
- /* Map of pages within chunk that keeps track of free/large/small. */
- arena_chunk_map_t map[1]; /* Dynamically sized. */
-};
-typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
-
-typedef struct arena_run_s arena_run_t;
-struct arena_run_s {
-#ifdef MALLOC_DEBUG
- uint32_t magic;
-# define ARENA_RUN_MAGIC 0x384adf93
-#endif
-
- /* Bin this run is associated with. */
- arena_bin_t *bin;
-
- /* Index of first element that might have a free region. */
- unsigned regs_minelm;
-
- /* Number of free regions in run. */
- unsigned nfree;
-
- /* Bitmask of in-use regions (0: in use, 1: free). */
- unsigned regs_mask[1]; /* Dynamically sized. */
-};
-
-struct arena_bin_s {
- /*
- * Current run being used to service allocations of this bin's size
- * class.
- */
- arena_run_t *runcur;
-
- /*
- * Tree of non-full runs. This tree is used when looking for an
- * existing run when runcur is no longer usable. We choose the
- * non-full run that is lowest in memory; this policy tends to keep
- * objects packed well, and it can also help reduce the number of
- * almost-empty chunks.
- */
- arena_run_tree_t runs;
-
- /* Size of regions in a run for this bin's size class. */
- size_t reg_size;
-
- /* Total size of a run for this bin's size class. */
- size_t run_size;
-
- /* Total number of regions in a run for this bin's size class. */
- uint32_t nregs;
-
- /* Number of elements in a run's regs_mask for this bin's size class. */
- uint32_t regs_mask_nelms;
-
- /* Offset of first region in a run for this bin's size class. */
- uint32_t reg0_offset;
-
-#ifdef MALLOC_STATS
- /* Bin statistics. */
- malloc_bin_stats_t stats;
-#endif
-};
-
-struct arena_s {
-#ifdef MALLOC_DEBUG
- uint32_t magic;
-# define ARENA_MAGIC 0x947d3d24
-#endif
-
- /* All operations on this arena require that lock be locked. */
- pthread_mutex_t lock;
-
-#ifdef MALLOC_STATS
- arena_stats_t stats;
-#endif
-
- /* Tree of dirty-page-containing chunks this arena manages. */
- arena_chunk_tree_t chunks_dirty;
-
- /*
- * In order to avoid rapid chunk allocation/deallocation when an arena
- * oscillates right on the cusp of needing a new chunk, cache the most
- * recently freed chunk. The spare is left in the arena's chunk trees
- * until it is deleted.
- *
- * There is one spare chunk per arena, rather than one spare total, in
- * order to avoid interactions between multiple threads that could make
- * a single spare inadequate.
- */
- arena_chunk_t *spare;
-
- /*
- * Current count of pages within unused runs that are potentially
- * dirty, and for which madvise(... MADV_DONTNEED) has not been called.
- * By tracking this, we can institute a limit on how much dirty unused
- * memory is mapped for each arena.
- */
- size_t ndirty;
-
- /*
- * Size/address-ordered tree of this arena's available runs. This tree
- * is used for first-best-fit run allocation.
- */
- arena_avail_tree_t runs_avail;
-
-#ifdef MALLOC_BALANCE
- /*
- * The arena load balancing machinery needs to keep track of how much
- * lock contention there is. This value is exponentially averaged.
- */
- uint32_t contention;
-#endif
-
- /*
- * bins is used to store rings of free regions of the following sizes,
- * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
- *
- * bins[i] | size |
- * --------+------+
- * 0 | 2 |
- * 1 | 4 |
- * 2 | 8 |
- * --------+------+
- * 3 | 16 |
- * 4 | 32 |
- * 5 | 48 |
- * 6 | 64 |
- * : :
- * : :
- * 33 | 496 |
- * 34 | 512 |
- * --------+------+
- * 35 | 1024 |
- * 36 | 2048 |
- * --------+------+
- */
- arena_bin_t bins[1]; /* Dynamically sized. */
-};
-
-/******************************************************************************/
-/*
- * Magazine data structures.
- */
-
-#ifdef MALLOC_MAG
-typedef struct mag_s mag_t;
-struct mag_s {
- size_t binind; /* Index of associated bin. */
- size_t nrounds;
- void *rounds[1]; /* Dynamically sized. */
-};
-
-/*
- * Magazines are lazily allocated, but once created, they remain until the
- * associated mag_rack is destroyed.
- */
-typedef struct bin_mags_s bin_mags_t;
-struct bin_mags_s {
- mag_t *curmag;
- mag_t *sparemag;
-};
-
-typedef struct mag_rack_s mag_rack_t;
-struct mag_rack_s {
- bin_mags_t bin_mags[1]; /* Dynamically sized. */
-};
-#endif
-
-/******************************************************************************/
-/*
- * Data.
- */
-
-/* Number of CPUs. */
-static unsigned ncpus;
-
-/* VM page size. */
-static size_t pagesize;
-static size_t pagesize_mask;
-static size_t pagesize_2pow;
-
-/* Various bin-related settings. */
-#ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
-# define ntbins ((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
-#else
-# define ntbins 0
-#endif
-static unsigned nqbins; /* Number of quantum-spaced bins. */
-static unsigned ncbins; /* Number of cacheline-spaced bins. */
-static unsigned nsbins; /* Number of subpage-spaced bins. */
-static unsigned nbins;
-#ifdef MALLOC_TINY
-# define tspace_max ((size_t)(QUANTUM >> 1))
-#endif
-#define qspace_min QUANTUM
-static size_t qspace_max;
-static size_t cspace_min;
-static size_t cspace_max;
-static size_t sspace_min;
-static size_t sspace_max;
-#define bin_maxclass sspace_max
-
-static uint8_t const *size2bin;
-/*
- * const_size2bin is a static constant lookup table that in the common case can
- * be used as-is for size2bin. For dynamically linked programs, this avoids
- * a page of memory overhead per process.
- */
-#define S2B_1(i) i,
-#define S2B_2(i) S2B_1(i) S2B_1(i)
-#define S2B_4(i) S2B_2(i) S2B_2(i)
-#define S2B_8(i) S2B_4(i) S2B_4(i)
-#define S2B_16(i) S2B_8(i) S2B_8(i)
-#define S2B_32(i) S2B_16(i) S2B_16(i)
-#define S2B_64(i) S2B_32(i) S2B_32(i)
-#define S2B_128(i) S2B_64(i) S2B_64(i)
-#define S2B_256(i) S2B_128(i) S2B_128(i)
-static const uint8_t const_size2bin[(1U << PAGESIZE_2POW) - 255] = {
- S2B_1(0xffU) /* 0 */
-#if (QUANTUM_2POW == 4)
-/* 64-bit system ************************/
-# ifdef MALLOC_TINY
- S2B_2(0) /* 2 */
- S2B_2(1) /* 4 */
- S2B_4(2) /* 8 */
- S2B_8(3) /* 16 */
-# define S2B_QMIN 3
-# else
- S2B_16(0) /* 16 */
-# define S2B_QMIN 0
-# endif
- S2B_16(S2B_QMIN + 1) /* 32 */
- S2B_16(S2B_QMIN + 2) /* 48 */
- S2B_16(S2B_QMIN + 3) /* 64 */
- S2B_16(S2B_QMIN + 4) /* 80 */
- S2B_16(S2B_QMIN + 5) /* 96 */
- S2B_16(S2B_QMIN + 6) /* 112 */
- S2B_16(S2B_QMIN + 7) /* 128 */
-# define S2B_CMIN (S2B_QMIN + 8)
-#else
-/* 32-bit system ************************/
-# ifdef MALLOC_TINY
- S2B_2(0) /* 2 */
- S2B_2(1) /* 4 */
- S2B_4(2) /* 8 */
-# define S2B_QMIN 2
-# else
- S2B_8(0) /* 8 */
-# define S2B_QMIN 0
-# endif
- S2B_8(S2B_QMIN + 1) /* 16 */
- S2B_8(S2B_QMIN + 2) /* 24 */
- S2B_8(S2B_QMIN + 3) /* 32 */
- S2B_8(S2B_QMIN + 4) /* 40 */
- S2B_8(S2B_QMIN + 5) /* 48 */
- S2B_8(S2B_QMIN + 6) /* 56 */
- S2B_8(S2B_QMIN + 7) /* 64 */
- S2B_8(S2B_QMIN + 8) /* 72 */
- S2B_8(S2B_QMIN + 9) /* 80 */
- S2B_8(S2B_QMIN + 10) /* 88 */
- S2B_8(S2B_QMIN + 11) /* 96 */
- S2B_8(S2B_QMIN + 12) /* 104 */
- S2B_8(S2B_QMIN + 13) /* 112 */
- S2B_8(S2B_QMIN + 14) /* 120 */
- S2B_8(S2B_QMIN + 15) /* 128 */
-# define S2B_CMIN (S2B_QMIN + 16)
-#endif
-/****************************************/
- S2B_64(S2B_CMIN + 0) /* 192 */
- S2B_64(S2B_CMIN + 1) /* 256 */
- S2B_64(S2B_CMIN + 2) /* 320 */
- S2B_64(S2B_CMIN + 3) /* 384 */
- S2B_64(S2B_CMIN + 4) /* 448 */
- S2B_64(S2B_CMIN + 5) /* 512 */
-# define S2B_SMIN (S2B_CMIN + 6)
- S2B_256(S2B_SMIN + 0) /* 768 */
- S2B_256(S2B_SMIN + 1) /* 1024 */
- S2B_256(S2B_SMIN + 2) /* 1280 */
- S2B_256(S2B_SMIN + 3) /* 1536 */
- S2B_256(S2B_SMIN + 4) /* 1792 */
- S2B_256(S2B_SMIN + 5) /* 2048 */
- S2B_256(S2B_SMIN + 6) /* 2304 */
- S2B_256(S2B_SMIN + 7) /* 2560 */
- S2B_256(S2B_SMIN + 8) /* 2816 */
- S2B_256(S2B_SMIN + 9) /* 3072 */
- S2B_256(S2B_SMIN + 10) /* 3328 */
- S2B_256(S2B_SMIN + 11) /* 3584 */
- S2B_256(S2B_SMIN + 12) /* 3840 */
-#if (PAGESIZE_2POW == 13)
- S2B_256(S2B_SMIN + 13) /* 4096 */
- S2B_256(S2B_SMIN + 14) /* 4352 */
- S2B_256(S2B_SMIN + 15) /* 4608 */
- S2B_256(S2B_SMIN + 16) /* 4864 */
- S2B_256(S2B_SMIN + 17) /* 5120 */
- S2B_256(S2B_SMIN + 18) /* 5376 */
- S2B_256(S2B_SMIN + 19) /* 5632 */
- S2B_256(S2B_SMIN + 20) /* 5888 */
- S2B_256(S2B_SMIN + 21) /* 6144 */
- S2B_256(S2B_SMIN + 22) /* 6400 */
- S2B_256(S2B_SMIN + 23) /* 6656 */
- S2B_256(S2B_SMIN + 24) /* 6912 */
- S2B_256(S2B_SMIN + 25) /* 7168 */
- S2B_256(S2B_SMIN + 26) /* 7424 */
- S2B_256(S2B_SMIN + 27) /* 7680 */
- S2B_256(S2B_SMIN + 28) /* 7936 */
-#endif
-};
-#undef S2B_1
-#undef S2B_2
-#undef S2B_4
-#undef S2B_8
-#undef S2B_16
-#undef S2B_32
-#undef S2B_64
-#undef S2B_128
-#undef S2B_256
-#undef S2B_QMIN
-#undef S2B_CMIN
-#undef S2B_SMIN
-
-#ifdef MALLOC_MAG
-static size_t max_rounds;
-#endif
-
-/* Various chunk-related settings. */
-static size_t chunksize;
-static size_t chunksize_mask; /* (chunksize - 1). */
-static size_t chunk_npages;
-static size_t arena_chunk_header_npages;
-static size_t arena_maxclass; /* Max size class for arenas. */
-
-/********/
-/*
- * Chunks.
- */
-
-/* Protects chunk-related data structures. */
-static malloc_mutex_t huge_mtx;
-
-/* Tree of chunks that are stand-alone huge allocations. */
-static extent_tree_t huge;
-
-#ifdef MALLOC_DSS
-/*
- * Protects sbrk() calls. This avoids malloc races among threads, though it
- * does not protect against races with threads that call sbrk() directly.
- */
-static malloc_mutex_t dss_mtx;
-/* Base address of the DSS. */
-static void *dss_base;
-/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
-static void *dss_prev;
-/* Current upper limit on DSS addresses. */
-static void *dss_max;
-
-/*
- * Trees of chunks that were previously allocated (trees differ only in node
- * ordering). These are used when allocating chunks, in an attempt to re-use
- * address space. Depending on function, different tree orderings are needed,
- * which is why there are two trees with the same contents.
- */
-static extent_tree_t dss_chunks_szad;
-static extent_tree_t dss_chunks_ad;
-#endif
-
-#ifdef MALLOC_STATS
-/* Huge allocation statistics. */
-static uint64_t huge_nmalloc;
-static uint64_t huge_ndalloc;
-static size_t huge_allocated;
-#endif
-
-/****************************/
-/*
- * base (internal allocation).
- */
-
-/*
- * Current pages that are being used for internal memory allocations. These
- * pages are carved up in cacheline-size quanta, so that there is no chance of
- * false cache line sharing.
- */
-static void *base_pages;
-static void *base_next_addr;
-static void *base_past_addr; /* Addr immediately past base_pages. */
-static extent_node_t *base_nodes;
-static malloc_mutex_t base_mtx;
-#ifdef MALLOC_STATS
-static size_t base_mapped;
-#endif
-
-/********/
-/*
- * Arenas.
- */
-
-/*
- * Arenas that are used to service external requests. Not all elements of the
- * arenas array are necessarily used; arenas are created lazily as needed.
- */
-static arena_t **arenas;
-static unsigned narenas;
-#ifndef NO_TLS
-# ifdef MALLOC_BALANCE
-static unsigned narenas_2pow;
-# else
-static unsigned next_arena;
-# endif
-#endif
-static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
-
-#ifndef NO_TLS
-/*
- * Map of pthread_self() --> arenas[???], used for selecting an arena to use
- * for allocations.
- */
-static __thread arena_t *arenas_map;
-#endif
-
-#ifdef MALLOC_MAG
-/*
- * Map of thread-specific magazine racks, used for thread-specific object
- * caching.
- */
-static __thread mag_rack_t *mag_rack;
-#endif
-
-#ifdef MALLOC_STATS
-/* Chunk statistics. */
-static chunk_stats_t stats_chunks;
-#endif
-
-/*******************************/
-/*
- * Runtime configuration options.
- */
-const char *_malloc_options;
-
-#ifndef MALLOC_PRODUCTION
-static bool opt_abort = true;
-static bool opt_junk = true;
-#else
-static bool opt_abort = false;
-static bool opt_junk = false;
-#endif
-#ifdef MALLOC_DSS
-static bool opt_dss = true;
-static bool opt_mmap = true;
-#endif
-#ifdef MALLOC_MAG
-static bool opt_mag = true;
-static size_t opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
-#endif
-static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
-#ifdef MALLOC_BALANCE
-static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
-#endif
-static bool opt_print_stats = false;
-static size_t opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
-static size_t opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
-static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
-static bool opt_utrace = false;
-static bool opt_sysv = false;
-static bool opt_xmalloc = false;
-static bool opt_zero = false;
-static int opt_narenas_lshift = 0;
-
-typedef struct {
- void *p;
- size_t s;
- void *r;
-} malloc_utrace_t;
-
-#ifdef MALLOC_STATS
-#define UTRACE(a, b, c) \
- if (opt_utrace) { \
- malloc_utrace_t ut; \
- ut.p = (a); \
- ut.s = (b); \
- ut.r = (c); \
- utrace(&ut, sizeof(ut)); \
- }
-#else
-#define UTRACE(a, b, c)
-#endif
-
-/******************************************************************************/
-/*
- * Begin function prototypes for non-inline static functions.
- */
-
-static bool malloc_mutex_init(malloc_mutex_t *mutex);
-static bool malloc_spin_init(pthread_mutex_t *lock);
-static void wrtmessage(const char *p1, const char *p2, const char *p3,
- const char *p4);
-#ifdef MALLOC_STATS
-static void malloc_printf(const char *format, ...);
-#endif
-static char *umax2s(uintmax_t x, char *s);
-#ifdef MALLOC_DSS
-static bool base_pages_alloc_dss(size_t minsize);
-#endif
-static bool base_pages_alloc_mmap(size_t minsize);
-static bool base_pages_alloc(size_t minsize);
-static void *base_alloc(size_t size);
-static extent_node_t *base_node_alloc(void);
-static void base_node_dealloc(extent_node_t *node);
-#ifdef MALLOC_STATS
-static void stats_print(arena_t *arena);
-#endif
-static void *pages_map(void *addr, size_t size);
-static void pages_unmap(void *addr, size_t size);
-#ifdef MALLOC_DSS
-static void *chunk_alloc_dss(size_t size);
-static void *chunk_recycle_dss(size_t size, bool zero);
-#endif
-static void *chunk_alloc_mmap(size_t size);
-static void *chunk_alloc(size_t size, bool zero);
-#ifdef MALLOC_DSS
-static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
-static bool chunk_dealloc_dss(void *chunk, size_t size);
-#endif
-static void chunk_dealloc_mmap(void *chunk, size_t size);
-static void chunk_dealloc(void *chunk, size_t size);
-#ifndef NO_TLS
-static arena_t *choose_arena_hard(void);
-#endif
-static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
- bool large, bool zero);
-static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
-static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
-static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
- bool zero);
-static void arena_purge(arena_t *arena);
-static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
-static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
- arena_run_t *run, size_t oldsize, size_t newsize);
-static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
- arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
-static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
-static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
-static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
-#ifdef MALLOC_BALANCE
-static void arena_lock_balance_hard(arena_t *arena);
-#endif
-#ifdef MALLOC_MAG
-static void mag_load(mag_t *mag);
-#endif
-static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
-static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
- size_t alloc_size);
-static size_t arena_salloc(const void *ptr);
-#ifdef MALLOC_MAG
-static void mag_unload(mag_t *mag);
-#endif
-static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
- void *ptr);
-static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
- void *ptr, size_t size, size_t oldsize);
-static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
- void *ptr, size_t size, size_t oldsize);
-static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
-static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
-static bool arena_new(arena_t *arena);
-static arena_t *arenas_extend(unsigned ind);
-#ifdef MALLOC_MAG
-static mag_t *mag_create(arena_t *arena, size_t binind);
-static void mag_destroy(mag_t *mag);
-static mag_rack_t *mag_rack_create(arena_t *arena);
-static void mag_rack_destroy(mag_rack_t *rack);
-#endif
-static void *huge_malloc(size_t size, bool zero);
-static void *huge_palloc(size_t alignment, size_t size);
-static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
-static void huge_dalloc(void *ptr);
-static void malloc_print_stats(void);
-#ifdef MALLOC_DEBUG
-static void size2bin_validate(void);
-#endif
-static bool size2bin_init(void);
-static bool size2bin_init_hard(void);
-static unsigned malloc_ncpus(void);
-static bool malloc_init_hard(void);
-void _malloc_prefork(void);
-void _malloc_postfork(void);
-
-/*
- * End function prototypes.
- */
-/******************************************************************************/
-
-/*
- * Functions missing prototypes which caused -Werror to fail.
- * Not sure if it has any side effects.
- * */
-size_t malloc_usable_size(const void *ptr);
-void _malloc_thread_cleanup(void);
-
-
-static void
-wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
-{
-
- write(STDERR_FILENO, p1, strlen(p1));
- write(STDERR_FILENO, p2, strlen(p2));
- write(STDERR_FILENO, p3, strlen(p3));
- write(STDERR_FILENO, p4, strlen(p4));
-}
-
-#define _malloc_message malloc_message
-void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
- const char *p4) = wrtmessage;
-
-/*
- * We don't want to depend on vsnprintf() for production builds, since that can
- * cause unnecessary bloat for static binaries. umax2s() provides minimal
- * integer printing functionality, so that malloc_printf() use can be limited to
- * MALLOC_STATS code.
- */
-#define UMAX2S_BUFSIZE 21
-static char *
-umax2s(uintmax_t x, char *s)
-{
- unsigned i;
-
- i = UMAX2S_BUFSIZE - 1;
- s[i] = '\0';
- do {
- i--;
- s[i] = "0123456789"[x % 10];
- x /= 10;
- } while (x > 0);
-
- return (&s[i]);
-}
-
-/*
- * Define a custom assert() in order to reduce the chances of deadlock during
- * assertion failure.
- */
-#ifdef MALLOC_DEBUG
-# define assert(e) do { \
- if (!(e)) { \
- char line_buf[UMAX2S_BUFSIZE]; \
- _malloc_message(__FILE__, ":", umax2s(__LINE__, \
- line_buf), ": Failed assertion: "); \
- _malloc_message("\"", #e, "\"\n", ""); \
- abort(); \
- } \
-} while (0)
-#else
-#define assert(e)
-#endif
-
-#ifdef MALLOC_STATS
-static int
-utrace(const void *addr, size_t len)
-{
- malloc_utrace_t *ut = (malloc_utrace_t *)addr;
-
- assert(len == sizeof(malloc_utrace_t));
-
- if (ut->p == NULL && ut->s == 0 && ut->r == NULL)
- malloc_printf("%d x USER malloc_init()\n", getpid());
- else if (ut->p == NULL && ut->r != NULL) {
- malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r,
- ut->s);
- } else if (ut->p != NULL && ut->r != NULL) {
- malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(),
- ut->r, ut->p, ut->s);
- } else
- malloc_printf("%d x USER free(%p)\n", getpid(), ut->p);
-
- return (0);
-}
-#endif
-
-static inline const char *
-_getprogname(void)
-{
-
- return ("<jemalloc>");
-}
-
-#ifdef MALLOC_STATS
-/*
- * Print to stderr in such a way as to (hopefully) avoid memory allocation.
- */
-static void
-malloc_printf(const char *format, ...)
-{
- char buf[4096];
- va_list ap;
-
- va_start(ap, format);
- vsnprintf(buf, sizeof(buf), format, ap);
- va_end(ap);
- _malloc_message(buf, "", "", "");
-}
-#endif
-
-/******************************************************************************/
-/*
- * Begin mutex.
- */
-
-static bool
-malloc_mutex_init(malloc_mutex_t *mutex)
-{
- pthread_mutexattr_t attr;
-
- if (pthread_mutexattr_init(&attr) != 0)
- return (true);
- pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
- if (pthread_mutex_init(mutex, &attr) != 0) {
- pthread_mutexattr_destroy(&attr);
- return (true);
- }
- pthread_mutexattr_destroy(&attr);
-
- return (false);
-}
-
-static inline void
-malloc_mutex_lock(malloc_mutex_t *mutex)
-{
-
- if (__isthreaded)
- pthread_mutex_lock(mutex);
-}
-
-static inline void
-malloc_mutex_unlock(malloc_mutex_t *mutex)
-{
-
- if (__isthreaded)
- pthread_mutex_unlock(mutex);
-}
-
-/*
- * End mutex.
- */
-/******************************************************************************/
-/*
- * Begin spin lock. Spin locks here are actually adaptive mutexes that block
- * after a period of spinning, because unbounded spinning would allow for
- * priority inversion.
- */
-
-static bool
-malloc_spin_init(pthread_mutex_t *lock)
-{
-
- if (pthread_mutex_init(lock, NULL) != 0)
- return (true);
-
- return (false);
-}
-
-static inline unsigned
-malloc_spin_lock(pthread_mutex_t *lock)
-{
- unsigned ret = 0;
-
- if (__isthreaded) {
- if (pthread_mutex_trylock(lock) != 0) {
- unsigned i;
- volatile unsigned j;
-
- /* Exponentially back off. */
- for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
- for (j = 0; j < (1U << i); j++) {
- ret++;
- CPU_SPINWAIT;
- }
-
- if (pthread_mutex_trylock(lock) == 0)
- return (ret);
- }
-
- /*
- * Spinning failed. Block until the lock becomes
- * available, in order to avoid indefinite priority
- * inversion.
- */
- pthread_mutex_lock(lock);
- assert((ret << BLOCK_COST_2POW) != 0);
- return (ret << BLOCK_COST_2POW);
- }
- }
-
- return (ret);
-}
-
-static inline void
-malloc_spin_unlock(pthread_mutex_t *lock)
-{
-
- if (__isthreaded)
- pthread_mutex_unlock(lock);
-}
-
-/*
- * End spin lock.
- */
-/******************************************************************************/
-/*
- * Begin Utility functions/macros.
- */
-
-/* Return the chunk address for allocation address a. */
-#define CHUNK_ADDR2BASE(a) \
- ((void *)((uintptr_t)(a) & ~chunksize_mask))
-
-/* Return the chunk offset of address a. */
-#define CHUNK_ADDR2OFFSET(a) \
- ((size_t)((uintptr_t)(a) & chunksize_mask))
-
-/* Return the smallest chunk multiple that is >= s. */
-#define CHUNK_CEILING(s) \
- (((s) + chunksize_mask) & ~chunksize_mask)
-
-/* Return the smallest quantum multiple that is >= a. */
-#define QUANTUM_CEILING(a) \
- (((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
-
-/* Return the smallest cacheline multiple that is >= s. */
-#define CACHELINE_CEILING(s) \
- (((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
-
-/* Return the smallest subpage multiple that is >= s. */
-#define SUBPAGE_CEILING(s) \
- (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
-
-/* Return the smallest pagesize multiple that is >= s. */
-#define PAGE_CEILING(s) \
- (((s) + pagesize_mask) & ~pagesize_mask)
-
-#ifdef MALLOC_TINY
-/* Compute the smallest power of 2 that is >= x. */
-static inline size_t
-pow2_ceil(size_t x)
-{
-
- x--;
- x |= x >> 1;
- x |= x >> 2;
- x |= x >> 4;
- x |= x >> 8;
- x |= x >> 16;
-#if (SIZEOF_PTR == 8)
- x |= x >> 32;
-#endif
- x++;
- return (x);
-}
-#endif
-
-#ifdef MALLOC_BALANCE
-/*
- * Use a simple linear congruential pseudo-random number generator:
- *
- * prn(y) = (a*x + c) % m
- *
- * where the following constants ensure maximal period:
- *
- * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
- * c == Odd number (relatively prime to 2^n).
- * m == 2^32
- *
- * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
- *
- * This choice of m has the disadvantage that the quality of the bits is
- * proportional to bit position. For example. the lowest bit has a cycle of 2,
- * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
- * bits.
- */
-# define PRN_DEFINE(suffix, var, a, c) \
-static inline void \
-sprn_##suffix(uint32_t seed) \
-{ \
- var = seed; \
-} \
- \
-static inline uint32_t \
-prn_##suffix(uint32_t lg_range) \
-{ \
- uint32_t ret, x; \
- \
- assert(lg_range > 0); \
- assert(lg_range <= 32); \
- \
- x = (var * (a)) + (c); \
- var = x; \
- ret = x >> (32 - lg_range); \
- \
- return (ret); \
-}
-# define SPRN(suffix, seed) sprn_##suffix(seed)
-# define PRN(suffix, lg_range) prn_##suffix(lg_range)
-#endif
-
-#ifdef MALLOC_BALANCE
-/* Define the PRNG used for arena assignment. */
-static __thread uint32_t balance_x;
-PRN_DEFINE(balance, balance_x, 1297, 1301)
-#endif
-
-/******************************************************************************/
-
-#ifdef MALLOC_DSS
-static bool
-base_pages_alloc_dss(size_t minsize)
-{
-
- /*
- * Do special DSS allocation here, since base allocations don't need to
- * be chunk-aligned.
- */
- malloc_mutex_lock(&dss_mtx);
- if (dss_prev != (void *)-1) {
- intptr_t incr;
- size_t csize = CHUNK_CEILING(minsize);
-
- do {
- /* Get the current end of the DSS. */
- dss_max = sbrk(0);
-
- /*
- * Calculate how much padding is necessary to
- * chunk-align the end of the DSS. Don't worry about
- * dss_max not being chunk-aligned though.
- */
- incr = (intptr_t)chunksize
- - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
- assert(incr >= 0);
- if ((size_t)incr < minsize)
- incr += csize;
-
- dss_prev = sbrk(incr);
- if (dss_prev == dss_max) {
- /* Success. */
- dss_max = (void *)((intptr_t)dss_prev + incr);
- base_pages = dss_prev;
- base_next_addr = base_pages;
- base_past_addr = dss_max;
-#ifdef MALLOC_STATS
- base_mapped += incr;
-#endif
- malloc_mutex_unlock(&dss_mtx);
- return (false);
- }
- } while (dss_prev != (void *)-1);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- return (true);
-}
-#endif
-
-static bool
-base_pages_alloc_mmap(size_t minsize)
-{
- size_t csize;
-
- assert(minsize != 0);
- csize = PAGE_CEILING(minsize);
- base_pages = pages_map(NULL, csize);
- if (base_pages == NULL)
- return (true);
- base_next_addr = base_pages;
- base_past_addr = (void *)((uintptr_t)base_pages + csize);
-#ifdef MALLOC_STATS
- base_mapped += csize;
-#endif
-
- return (false);
-}
-
-static bool
-base_pages_alloc(size_t minsize)
-{
-
-#ifdef MALLOC_DSS
- if (opt_dss) {
- if (base_pages_alloc_dss(minsize) == false)
- return (false);
- }
-
- if (opt_mmap && minsize != 0)
-#endif
- {
- if (base_pages_alloc_mmap(minsize) == false)
- return (false);
- }
-
- return (true);
-}
-
-static void *
-base_alloc(size_t size)
-{
- void *ret;
- size_t csize;
-
- /* Round size up to nearest multiple of the cacheline size. */
- csize = CACHELINE_CEILING(size);
-
- malloc_mutex_lock(&base_mtx);
- /* Make sure there's enough space for the allocation. */
- if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
- if (base_pages_alloc(csize)) {
- malloc_mutex_unlock(&base_mtx);
- return (NULL);
- }
- }
- /* Allocate. */
- ret = base_next_addr;
- base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
- malloc_mutex_unlock(&base_mtx);
-
- return (ret);
-}
-
-static extent_node_t *
-base_node_alloc(void)
-{
- extent_node_t *ret;
-
- malloc_mutex_lock(&base_mtx);
- if (base_nodes != NULL) {
- ret = base_nodes;
- base_nodes = *(extent_node_t **)ret;
- malloc_mutex_unlock(&base_mtx);
- } else {
- malloc_mutex_unlock(&base_mtx);
- ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
- }
-
- return (ret);
-}
-
-static void
-base_node_dealloc(extent_node_t *node)
-{
-
- malloc_mutex_lock(&base_mtx);
- *(extent_node_t **)node = base_nodes;
- base_nodes = node;
- malloc_mutex_unlock(&base_mtx);
-}
-
-/******************************************************************************/
-
-#ifdef MALLOC_STATS
-static void
-stats_print(arena_t *arena)
-{
- unsigned i, gap_start;
-
- malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
- " %llu madvise%s, %llu page%s purged\n",
- arena->ndirty, arena->ndirty == 1 ? "" : "s",
- arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
- arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
- arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
-
- malloc_printf(" allocated nmalloc ndalloc\n");
- malloc_printf("small: %12zu %12llu %12llu\n",
- arena->stats.allocated_small, arena->stats.nmalloc_small,
- arena->stats.ndalloc_small);
- malloc_printf("large: %12zu %12llu %12llu\n",
- arena->stats.allocated_large, arena->stats.nmalloc_large,
- arena->stats.ndalloc_large);
- malloc_printf("total: %12zu %12llu %12llu\n",
- arena->stats.allocated_small + arena->stats.allocated_large,
- arena->stats.nmalloc_small + arena->stats.nmalloc_large,
- arena->stats.ndalloc_small + arena->stats.ndalloc_large);
- malloc_printf("mapped: %12zu\n", arena->stats.mapped);
-
-#ifdef MALLOC_MAG
- if (__isthreaded && opt_mag) {
- malloc_printf("bins: bin size regs pgs mags "
- "newruns reruns maxruns curruns\n");
- } else {
-#endif
- malloc_printf("bins: bin size regs pgs requests "
- "newruns reruns maxruns curruns\n");
-#ifdef MALLOC_MAG
- }
-#endif
- for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
- if (arena->bins[i].stats.nruns == 0) {
- if (gap_start == UINT_MAX)
- gap_start = i;
- } else {
- if (gap_start != UINT_MAX) {
- if (i > gap_start + 1) {
- /* Gap of more than one size class. */
- malloc_printf("[%u..%u]\n",
- gap_start, i - 1);
- } else {
- /* Gap of one size class. */
- malloc_printf("[%u]\n", gap_start);
- }
- gap_start = UINT_MAX;
- }
- malloc_printf(
- "%13u %1s %4u %4u %3u %9llu %9llu"
- " %9llu %7lu %7lu\n",
- i,
- i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
- i < ntbins + nqbins + ncbins ? "C" : "S",
- arena->bins[i].reg_size,
- arena->bins[i].nregs,
- arena->bins[i].run_size >> pagesize_2pow,
-#ifdef MALLOC_MAG
- (__isthreaded && opt_mag) ?
- arena->bins[i].stats.nmags :
-#endif
- arena->bins[i].stats.nrequests,
- arena->bins[i].stats.nruns,
- arena->bins[i].stats.reruns,
- arena->bins[i].stats.highruns,
- arena->bins[i].stats.curruns);
- }
- }
- if (gap_start != UINT_MAX) {
- if (i > gap_start + 1) {
- /* Gap of more than one size class. */
- malloc_printf("[%u..%u]\n", gap_start, i - 1);
- } else {
- /* Gap of one size class. */
- malloc_printf("[%u]\n", gap_start);
- }
- }
-}
-#endif
-
-/*
- * End Utility functions/macros.
- */
-/******************************************************************************/
-/*
- * Begin extent tree code.
- */
-
-#ifdef MALLOC_DSS
-static inline int
-extent_szad_comp(extent_node_t *a, extent_node_t *b)
-{
- int ret;
- size_t a_size = a->size;
- size_t b_size = b->size;
-
- ret = (a_size > b_size) - (a_size < b_size);
- if (ret == 0) {
- uintptr_t a_addr = (uintptr_t)a->addr;
- uintptr_t b_addr = (uintptr_t)b->addr;
-
- ret = (a_addr > b_addr) - (a_addr < b_addr);
- }
-
- return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, extent_tree_szad_, extent_tree_t, extent_node_t,
- link_szad, extent_szad_comp)
-#endif
-
-static inline int
-extent_ad_comp(extent_node_t *a, extent_node_t *b)
-{
- uintptr_t a_addr = (uintptr_t)a->addr;
- uintptr_t b_addr = (uintptr_t)b->addr;
-
- return ((a_addr > b_addr) - (a_addr < b_addr));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
- extent_ad_comp)
-
-/*
- * End extent tree code.
- */
-/******************************************************************************/
-/*
- * Begin chunk management functions.
- */
-
-static void *
-pages_map(void *addr, size_t size)
-{
- void *ret;
-
- /*
- * We don't use MAP_FIXED here, because it can cause the *replacement*
- * of existing mappings, and we only want to create new mappings.
- */
- ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
- -1, 0);
- assert(ret != NULL);
-
- if (ret == MAP_FAILED)
- ret = NULL;
- else if (addr != NULL && ret != addr) {
- /*
- * We succeeded in mapping memory, but not in the right place.
- */
- if (munmap(ret, size) == -1) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(),
- ": (malloc) Error in munmap(): ", buf, "\n");
- if (opt_abort)
- abort();
- }
- ret = NULL;
- }
-
- assert(ret == NULL || (addr == NULL && ret != addr)
- || (addr != NULL && ret == addr));
- return (ret);
-}
-
-static void
-pages_unmap(void *addr, size_t size)
-{
-
- if (munmap(addr, size) == -1) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(),
- ": (malloc) Error in munmap(): ", buf, "\n");
- if (opt_abort)
- abort();
- }
-}
-
-#ifdef MALLOC_DSS
-static void *
-chunk_alloc_dss(size_t size)
-{
-
- /*
- * sbrk() uses a signed increment argument, so take care not to
- * interpret a huge allocation request as a negative increment.
- */
- if ((intptr_t)size < 0)
- return (NULL);
-
- malloc_mutex_lock(&dss_mtx);
- if (dss_prev != (void *)-1) {
- intptr_t incr;
-
- /*
- * The loop is necessary to recover from races with other
- * threads that are using the DSS for something other than
- * malloc.
- */
- do {
- void *ret;
-
- /* Get the current end of the DSS. */
- dss_max = sbrk(0);
-
- /*
- * Calculate how much padding is necessary to
- * chunk-align the end of the DSS.
- */
- incr = (intptr_t)size
- - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
- if (incr == (intptr_t)size)
- ret = dss_max;
- else {
- ret = (void *)((intptr_t)dss_max + incr);
- incr += size;
- }
-
- dss_prev = sbrk(incr);
- if (dss_prev == dss_max) {
- /* Success. */
- dss_max = (void *)((intptr_t)dss_prev + incr);
- malloc_mutex_unlock(&dss_mtx);
- return (ret);
- }
- } while (dss_prev != (void *)-1);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- return (NULL);
-}
-
-static void *
-chunk_recycle_dss(size_t size, bool zero)
-{
- extent_node_t *node, key;
-
- key.addr = NULL;
- key.size = size;
- malloc_mutex_lock(&dss_mtx);
- node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
- if (node != NULL) {
- void *ret = node->addr;
-
- /* Remove node from the tree. */
- extent_tree_szad_remove(&dss_chunks_szad, node);
- if (node->size == size) {
- extent_tree_ad_remove(&dss_chunks_ad, node);
- base_node_dealloc(node);
- } else {
- /*
- * Insert the remainder of node's address range as a
- * smaller chunk. Its position within dss_chunks_ad
- * does not change.
- */
- assert(node->size > size);
- node->addr = (void *)((uintptr_t)node->addr + size);
- node->size -= size;
- extent_tree_szad_insert(&dss_chunks_szad, node);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- if (zero)
- memset(ret, 0, size);
- return (ret);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- return (NULL);
-}
-#endif
-
-static void *
-chunk_alloc_mmap(size_t size)
-{
- void *ret;
- size_t offset;
-
- /*
- * Ideally, there would be a way to specify alignment to mmap() (like
- * NetBSD has), but in the absence of such a feature, we have to work
- * hard to efficiently create aligned mappings. The reliable, but
- * expensive method is to create a mapping that is over-sized, then
- * trim the excess. However, that always results in at least one call
- * to pages_unmap().
- *
- * A more optimistic approach is to try mapping precisely the right
- * amount, then try to append another mapping if alignment is off. In
- * practice, this works out well as long as the application is not
- * interleaving mappings via direct mmap() calls. If we do run into a
- * situation where there is an interleaved mapping and we are unable to
- * extend an unaligned mapping, our best option is to momentarily
- * revert to the reliable-but-expensive method. This will tend to
- * leave a gap in the memory map that is too small to cause later
- * problems for the optimistic method.
- */
-
- ret = pages_map(NULL, size);
- if (ret == NULL)
- return (NULL);
-
- offset = CHUNK_ADDR2OFFSET(ret);
- if (offset != 0) {
- /* Try to extend chunk boundary. */
- if (pages_map((void *)((uintptr_t)ret + size),
- chunksize - offset) == NULL) {
- /*
- * Extension failed. Clean up, then revert to the
- * reliable-but-expensive method.
- */
- pages_unmap(ret, size);
-
- /* Beware size_t wrap-around. */
- if (size + chunksize <= size)
- return NULL;
-
- ret = pages_map(NULL, size + chunksize);
- if (ret == NULL)
- return (NULL);
-
- /* Clean up unneeded leading/trailing space. */
- offset = CHUNK_ADDR2OFFSET(ret);
- if (offset != 0) {
- /* Leading space. */
- pages_unmap(ret, chunksize - offset);
-
- ret = (void *)((uintptr_t)ret +
- (chunksize - offset));
-
- /* Trailing space. */
- pages_unmap((void *)((uintptr_t)ret + size),
- offset);
- } else {
- /* Trailing space only. */
- pages_unmap((void *)((uintptr_t)ret + size),
- chunksize);
- }
- } else {
- /* Clean up unneeded leading space. */
- pages_unmap(ret, chunksize - offset);
- ret = (void *)((uintptr_t)ret + (chunksize - offset));
- }
- }
-
- return (ret);
-}
-
-static void *
-chunk_alloc(size_t size, bool zero)
-{
- void *ret;
-
- (void)zero; /* XXX */
- assert(size != 0);
- assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_DSS
- if (opt_dss) {
- ret = chunk_recycle_dss(size, zero);
- if (ret != NULL) {
- goto RETURN;
- }
-
- ret = chunk_alloc_dss(size);
- if (ret != NULL)
- goto RETURN;
- }
-
- if (opt_mmap)
-#endif
- {
- ret = chunk_alloc_mmap(size);
- if (ret != NULL)
- goto RETURN;
- }
-
- /* All strategies for allocation failed. */
- ret = NULL;
-RETURN:
-#ifdef MALLOC_STATS
- if (ret != NULL) {
- stats_chunks.nchunks += (size / chunksize);
- stats_chunks.curchunks += (size / chunksize);
- }
- if (stats_chunks.curchunks > stats_chunks.highchunks)
- stats_chunks.highchunks = stats_chunks.curchunks;
-#endif
-
- assert(CHUNK_ADDR2BASE(ret) == ret);
- return (ret);
-}
-
-#ifdef MALLOC_DSS
-static extent_node_t *
-chunk_dealloc_dss_record(void *chunk, size_t size)
-{
- extent_node_t *node, *prev, key;
-
- key.addr = (void *)((uintptr_t)chunk + size);
- node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
- /* Try to coalesce forward. */
- if (node != NULL && node->addr == key.addr) {
- /*
- * Coalesce chunk with the following address range. This does
- * not change the position within dss_chunks_ad, so only
- * remove/insert from/into dss_chunks_szad.
- */
- extent_tree_szad_remove(&dss_chunks_szad, node);
- node->addr = chunk;
- node->size += size;
- extent_tree_szad_insert(&dss_chunks_szad, node);
- } else {
- /*
- * Coalescing forward failed, so insert a new node. Drop
- * dss_mtx during node allocation, since it is possible that a
- * new base chunk will be allocated.
- */
- malloc_mutex_unlock(&dss_mtx);
- node = base_node_alloc();
- malloc_mutex_lock(&dss_mtx);
- if (node == NULL)
- return (NULL);
- node->addr = chunk;
- node->size = size;
- extent_tree_ad_insert(&dss_chunks_ad, node);
- extent_tree_szad_insert(&dss_chunks_szad, node);
- }
-
- /* Try to coalesce backward. */
- prev = extent_tree_ad_prev(&dss_chunks_ad, node);
- if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
- chunk) {
- /*
- * Coalesce chunk with the previous address range. This does
- * not change the position within dss_chunks_ad, so only
- * remove/insert node from/into dss_chunks_szad.
- */
- extent_tree_szad_remove(&dss_chunks_szad, prev);
- extent_tree_ad_remove(&dss_chunks_ad, prev);
-
- extent_tree_szad_remove(&dss_chunks_szad, node);
- node->addr = prev->addr;
- node->size += prev->size;
- extent_tree_szad_insert(&dss_chunks_szad, node);
-
- base_node_dealloc(prev);
- }
-
- return (node);
-}
-
-static bool
-chunk_dealloc_dss(void *chunk, size_t size)
-{
-
- malloc_mutex_lock(&dss_mtx);
- if ((uintptr_t)chunk >= (uintptr_t)dss_base
- && (uintptr_t)chunk < (uintptr_t)dss_max) {
- extent_node_t *node;
-
- /* Try to coalesce with other unused chunks. */
- node = chunk_dealloc_dss_record(chunk, size);
- if (node != NULL) {
- chunk = node->addr;
- size = node->size;
- }
-
- /* Get the current end of the DSS. */
- dss_max = sbrk(0);
-
- /*
- * Try to shrink the DSS if this chunk is at the end of the
- * DSS. The sbrk() call here is subject to a race condition
- * with threads that use brk(2) or sbrk(2) directly, but the
- * alternative would be to leak memory for the sake of poorly
- * designed multi-threaded programs.
- */
- if ((void *)((uintptr_t)chunk + size) == dss_max
- && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
- /* Success. */
- dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
-
- if (node != NULL) {
- extent_tree_szad_remove(&dss_chunks_szad, node);
- extent_tree_ad_remove(&dss_chunks_ad, node);
- base_node_dealloc(node);
- }
- malloc_mutex_unlock(&dss_mtx);
- } else {
- malloc_mutex_unlock(&dss_mtx);
- madvise(chunk, size, MADV_DONTNEED);
- }
-
- return (false);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- return (true);
-}
-#endif
-
-static void
-chunk_dealloc_mmap(void *chunk, size_t size)
-{
-
- pages_unmap(chunk, size);
-}
-
-static void
-chunk_dealloc(void *chunk, size_t size)
-{
-
- assert(chunk != NULL);
- assert(CHUNK_ADDR2BASE(chunk) == chunk);
- assert(size != 0);
- assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_STATS
- stats_chunks.curchunks -= (size / chunksize);
-#endif
-
-#ifdef MALLOC_DSS
- if (opt_dss) {
- if (chunk_dealloc_dss(chunk, size) == false)
- return;
- }
-
- if (opt_mmap)
-#endif
- chunk_dealloc_mmap(chunk, size);
-}
-
-/*
- * End chunk management functions.
- */
-/******************************************************************************/
-/*
- * Begin arena.
- */
-
-/*
- * Choose an arena based on a per-thread value (fast-path code, calls slow-path
- * code if necessary).
- */
-static inline arena_t *
-choose_arena(void)
-{
- arena_t *ret;
-
- /*
- * We can only use TLS if this is a PIC library, since for the static
- * library version, libc's malloc is used by TLS allocation, which
- * introduces a bootstrapping issue.
- */
-#ifndef NO_TLS
- if (__isthreaded == false) {
- /* Avoid the overhead of TLS for single-threaded operation. */
- return (arenas[0]);
- }
-
- ret = arenas_map;
- if (ret == NULL) {
- ret = choose_arena_hard();
- assert(ret != NULL);
- }
-#else
- if (__isthreaded && narenas > 1) {
- unsigned long ind;
-
- /*
- * Hash pthread_self() to one of the arenas. There is a prime
- * number of arenas, so this has a reasonable chance of
- * working. Even so, the hashing can be easily thwarted by
- * inconvenient pthread_self() values. Without specific
- * knowledge of how pthread_self() calculates values, we can't
- * easily do much better than this.
- */
- ind = (unsigned long) pthread_self() % narenas;
-
- /*
- * Optimistially assume that arenas[ind] has been initialized.
- * At worst, we find out that some other thread has already
- * done so, after acquiring the lock in preparation. Note that
- * this lazy locking also has the effect of lazily forcing
- * cache coherency; without the lock acquisition, there's no
- * guarantee that modification of arenas[ind] by another thread
- * would be seen on this CPU for an arbitrary amount of time.
- *
- * In general, this approach to modifying a synchronized value
- * isn't a good idea, but in this case we only ever modify the
- * value once, so things work out well.
- */
- ret = arenas[ind];
- if (ret == NULL) {
- /*
- * Avoid races with another thread that may have already
- * initialized arenas[ind].
- */
- malloc_spin_lock(&arenas_lock);
- if (arenas[ind] == NULL)
- ret = arenas_extend((unsigned)ind);
- else
- ret = arenas[ind];
- malloc_spin_unlock(&arenas_lock);
- }
- } else
- ret = arenas[0];
-#endif
-
- assert(ret != NULL);
- return (ret);
-}
-
-#ifndef NO_TLS
-/*
- * Choose an arena based on a per-thread value (slow-path code only, called
- * only by choose_arena()).
- */
-static arena_t *
-choose_arena_hard(void)
-{
- arena_t *ret;
-
- assert(__isthreaded);
-
-#ifdef MALLOC_BALANCE
- /* Seed the PRNG used for arena load balancing. */
- SPRN(balance, (uint32_t)(uintptr_t)(pthread_self()));
-#endif
-
- if (narenas > 1) {
-#ifdef MALLOC_BALANCE
- unsigned ind;
-
- ind = PRN(balance, narenas_2pow);
- if ((ret = arenas[ind]) == NULL) {
- malloc_spin_lock(&arenas_lock);
- if ((ret = arenas[ind]) == NULL)
- ret = arenas_extend(ind);
- malloc_spin_unlock(&arenas_lock);
- }
-#else
- malloc_spin_lock(&arenas_lock);
- if ((ret = arenas[next_arena]) == NULL)
- ret = arenas_extend(next_arena);
- next_arena = (next_arena + 1) % narenas;
- malloc_spin_unlock(&arenas_lock);
-#endif
- } else
- ret = arenas[0];
-
- arenas_map = ret;
-
- return (ret);
-}
-#endif
-
-static inline int
-arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
-{
- uintptr_t a_chunk = (uintptr_t)a;
- uintptr_t b_chunk = (uintptr_t)b;
-
- assert(a != NULL);
- assert(b != NULL);
-
- return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, arena_chunk_tree_dirty_, arena_chunk_tree_t,
- arena_chunk_t, link_dirty, arena_chunk_comp)
-
-static inline int
-arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
- uintptr_t a_mapelm = (uintptr_t)a;
- uintptr_t b_mapelm = (uintptr_t)b;
-
- assert(a != NULL);
- assert(b != NULL);
-
- return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
- link, arena_run_comp)
-
-static inline int
-arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
- int ret;
- size_t a_size = a->bits & ~pagesize_mask;
- size_t b_size = b->bits & ~pagesize_mask;
-
- ret = (a_size > b_size) - (a_size < b_size);
- if (ret == 0) {
- uintptr_t a_mapelm, b_mapelm;
-
- if ((a->bits & CHUNK_MAP_KEY) == 0)
- a_mapelm = (uintptr_t)a;
- else {
- /*
- * Treat keys as though they are lower than anything
- * else.
- */
- a_mapelm = 0;
- }
- b_mapelm = (uintptr_t)b;
-
- ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
- }
-
- return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static ATTRIBUTE_UNUSED, arena_avail_tree_, arena_avail_tree_t,
- arena_chunk_map_t, link, arena_avail_comp)
-
-static inline void *
-arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
-{
- void *ret;
- unsigned i, mask, bit, regind;
-
- assert(run->magic == ARENA_RUN_MAGIC);
- assert(run->regs_minelm < bin->regs_mask_nelms);
-
- /*
- * Move the first check outside the loop, so that run->regs_minelm can
- * be updated unconditionally, without the possibility of updating it
- * multiple times.
- */
- i = run->regs_minelm;
- mask = run->regs_mask[i];
- if (mask != 0) {
- /* Usable allocation found. */
- bit = ffs((int)mask) - 1;
-
- regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
- assert(regind < bin->nregs);
- ret = (void *)(((uintptr_t)run) + bin->reg0_offset
- + (bin->reg_size * regind));
-
- /* Clear bit. */
- mask ^= (1U << bit);
- run->regs_mask[i] = mask;
-
- return (ret);
- }
-
- for (i++; i < bin->regs_mask_nelms; i++) {
- mask = run->regs_mask[i];
- if (mask != 0) {
- /* Usable allocation found. */
- bit = ffs((int)mask) - 1;
-
- regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
- assert(regind < bin->nregs);
- ret = (void *)(((uintptr_t)run) + bin->reg0_offset
- + (bin->reg_size * regind));
-
- /* Clear bit. */
- mask ^= (1U << bit);
- run->regs_mask[i] = mask;
-
- /*
- * Make a note that nothing before this element
- * contains a free region.
- */
- run->regs_minelm = i; /* Low payoff: + (mask == 0); */
-
- return (ret);
- }
- }
- /* Not reached. */
- assert(0);
- return (NULL);
-}
-
-static inline void
-arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
-{
- unsigned diff, regind, elm, bit;
-
- assert(run->magic == ARENA_RUN_MAGIC);
-
- /*
- * Avoid doing division with a variable divisor if possible. Using
- * actual division here can reduce allocator throughput by over 20%!
- */
- diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
- if ((size & (size - 1)) == 0) {
- /*
- * log2_table allows fast division of a power of two in the
- * [1..128] range.
- *
- * (x / divisor) becomes (x >> log2_table[divisor - 1]).
- */
- static const unsigned char log2_table[] = {
- 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
- };
-
- if (size <= 128)
- regind = (diff >> log2_table[size - 1]);
- else if (size <= 32768)
- regind = diff >> (8 + log2_table[(size >> 8) - 1]);
- else
- regind = diff / size;
- } else if (size < qspace_max) {
- /*
- * To divide by a number D that is not a power of two we
- * multiply by (2^21 / D) and then right shift by 21 positions.
- *
- * X / D
- *
- * becomes
- *
- * (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
- * >> SIZE_INV_SHIFT
- *
- * We can omit the first three elements, because we never
- * divide by 0, and QUANTUM and 2*QUANTUM are both powers of
- * two, which are handled above.
- */
-#define SIZE_INV_SHIFT 21
-#define QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
- static const unsigned qsize_invs[] = {
- QSIZE_INV(3),
- QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
-#if (QUANTUM_2POW < 4)
- ,
- QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
- QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
-#endif
- };
- assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
- >= (1U << QSPACE_MAX_2POW_DEFAULT));
-
- if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
- QUANTUM_2POW)) {
- regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
- regind >>= SIZE_INV_SHIFT;
- } else
- regind = diff / size;
-#undef QSIZE_INV
- } else if (size < cspace_max) {
-#define CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
- static const unsigned csize_invs[] = {
- CSIZE_INV(3),
- CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
- };
- assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
- 3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
-
- if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
- CACHELINE_2POW)) {
- regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
- diff;
- regind >>= SIZE_INV_SHIFT;
- } else
- regind = diff / size;
-#undef CSIZE_INV
- } else {
-#define SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
- static const unsigned ssize_invs[] = {
- SSIZE_INV(3),
- SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
- SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
- SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
-#if (PAGESIZE_2POW == 13)
- ,
- SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
- SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
- SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
- SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
-#endif
- };
- assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
- >= (1U << PAGESIZE_2POW));
-
- if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
- SUBPAGE_2POW)) {
- regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
- regind >>= SIZE_INV_SHIFT;
- } else
- regind = diff / size;
-#undef SSIZE_INV
- }
-#undef SIZE_INV_SHIFT
- assert(diff == regind * size);
- assert(regind < bin->nregs);
-
- elm = regind >> (SIZEOF_INT_2POW + 3);
- if (elm < run->regs_minelm)
- run->regs_minelm = elm;
- bit = regind - (elm << (SIZEOF_INT_2POW + 3));
- assert((run->regs_mask[elm] & (1U << bit)) == 0);
- run->regs_mask[elm] |= (1U << bit);
-}
-
-static void
-arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
- bool zero)
-{
- arena_chunk_t *chunk;
- size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
- old_ndirty = chunk->ndirty;
- run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
- >> pagesize_2pow);
- total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
- pagesize_2pow;
- need_pages = (size >> pagesize_2pow);
- assert(need_pages > 0);
- assert(need_pages <= total_pages);
- rem_pages = total_pages - need_pages;
-
- arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
-
- /* Keep track of trailing unused pages for later use. */
- if (rem_pages > 0) {
- chunk->map[run_ind+need_pages].bits = (rem_pages <<
- pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
- pagesize_mask);
- chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
- pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
- pagesize_mask);
- arena_avail_tree_insert(&arena->runs_avail,
- &chunk->map[run_ind+need_pages]);
- }
-
- for (i = 0; i < need_pages; i++) {
- /* Zero if necessary. */
- if (zero) {
- if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
- == 0) {
- memset((void *)((uintptr_t)chunk + ((run_ind
- + i) << pagesize_2pow)), 0, pagesize);
- /* CHUNK_MAP_ZEROED is cleared below. */
- }
- }
-
- /* Update dirty page accounting. */
- if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
- chunk->ndirty--;
- arena->ndirty--;
- /* CHUNK_MAP_DIRTY is cleared below. */
- }
-
- /* Initialize the chunk map. */
- if (large) {
- chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
- | CHUNK_MAP_ALLOCATED;
- } else {
- chunk->map[run_ind + i].bits = (size_t)run
- | CHUNK_MAP_ALLOCATED;
- }
- }
-
- /*
- * Set the run size only in the first element for large runs. This is
- * primarily a debugging aid, since the lack of size info for trailing
- * pages only matters if the application tries to operate on an
- * interior pointer.
- */
- if (large)
- chunk->map[run_ind].bits |= size;
-
- if (chunk->ndirty == 0 && old_ndirty > 0)
- arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
-}
-
-static arena_chunk_t *
-arena_chunk_alloc(arena_t *arena)
-{
- arena_chunk_t *chunk;
- size_t i;
-
- if (arena->spare != NULL) {
- chunk = arena->spare;
- arena->spare = NULL;
- } else {
- chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
- if (chunk == NULL)
- return (NULL);
-#ifdef MALLOC_STATS
- arena->stats.mapped += chunksize;
-#endif
-
- chunk->arena = arena;
-
- /*
- * Claim that no pages are in use, since the header is merely
- * overhead.
- */
- chunk->ndirty = 0;
-
- /*
- * Initialize the map to contain one maximal free untouched run.
- */
- for (i = 0; i < arena_chunk_header_npages; i++)
- chunk->map[i].bits = 0;
- chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
- for (i++; i < chunk_npages-1; i++) {
- chunk->map[i].bits = CHUNK_MAP_ZEROED;
- }
- chunk->map[chunk_npages-1].bits = arena_maxclass |
- CHUNK_MAP_ZEROED;
- }
-
- /* Insert the run into the runs_avail tree. */
- arena_avail_tree_insert(&arena->runs_avail,
- &chunk->map[arena_chunk_header_npages]);
-
- return (chunk);
-}
-
-static void
-arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
-{
-
- if (arena->spare != NULL) {
- if (arena->spare->ndirty > 0) {
- arena_chunk_tree_dirty_remove(
- &chunk->arena->chunks_dirty, arena->spare);
- arena->ndirty -= arena->spare->ndirty;
- }
- chunk_dealloc((void *)arena->spare, chunksize);
-#ifdef MALLOC_STATS
- arena->stats.mapped -= chunksize;
-#endif
- }
-
- /*
- * Remove run from runs_avail, regardless of whether this chunk
- * will be cached, so that the arena does not use it. Dirty page
- * flushing only uses the chunks_dirty tree, so leaving this chunk in
- * the chunks_* trees is sufficient for that purpose.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[arena_chunk_header_npages]);
-
- arena->spare = chunk;
-}
-
-static arena_run_t *
-arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
-{
- arena_chunk_t *chunk;
- arena_run_t *run;
- arena_chunk_map_t *mapelm, key;
-
- assert(size <= arena_maxclass);
- assert((size & pagesize_mask) == 0);
-
- /* Search the arena's chunks for the lowest best fit. */
- key.bits = size | CHUNK_MAP_KEY;
- mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
- if (mapelm != NULL) {
- arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
- size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
- / sizeof(arena_chunk_map_t);
-
- run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
- << pagesize_2pow));
- arena_run_split(arena, run, size, large, zero);
- return (run);
- }
-
- /*
- * No usable runs. Create a new chunk from which to allocate the run.
- */
- chunk = arena_chunk_alloc(arena);
- if (chunk == NULL)
- return (NULL);
- run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
- pagesize_2pow));
- /* Update page map. */
- arena_run_split(arena, run, size, large, zero);
- return (run);
-}
-
-static void
-arena_purge(arena_t *arena)
-{
- arena_chunk_t *chunk;
- size_t i, npages;
-#ifdef MALLOC_DEBUG
- size_t ndirty = 0;
-
- rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
- chunk) {
- ndirty += chunk->ndirty;
- } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
- assert(ndirty == arena->ndirty);
-#endif
- assert(arena->ndirty > opt_dirty_max);
-
-#ifdef MALLOC_STATS
- arena->stats.npurge++;
-#endif
-
- /*
- * Iterate downward through chunks until enough dirty memory has been
- * purged. Terminate as soon as possible in order to minimize the
- * number of system calls, even if a chunk has only been partially
- * purged.
- */
- while (arena->ndirty > (opt_dirty_max >> 1)) {
- chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
- assert(chunk != NULL);
-
- for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
- assert(i >= arena_chunk_header_npages);
-
- if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
- chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
- /* Find adjacent dirty run(s). */
- for (npages = 1; i > arena_chunk_header_npages
- && (chunk->map[i - 1].bits &
- CHUNK_MAP_DIRTY); npages++) {
- i--;
- chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
- }
- chunk->ndirty -= npages;
- arena->ndirty -= npages;
-
- madvise((void *)((uintptr_t)chunk + (i <<
- pagesize_2pow)), (npages << pagesize_2pow),
- MADV_DONTNEED);
-#ifdef MALLOC_STATS
- arena->stats.nmadvise++;
- arena->stats.purged += npages;
-#endif
- if (arena->ndirty <= (opt_dirty_max >> 1))
- break;
- }
- }
-
- if (chunk->ndirty == 0) {
- arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
- chunk);
- }
- }
-}
-
-static void
-arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
-{
- arena_chunk_t *chunk;
- size_t size, run_ind, run_pages;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
- run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
- >> pagesize_2pow);
- assert(run_ind >= arena_chunk_header_npages);
- assert(run_ind < chunk_npages);
- if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
- size = chunk->map[run_ind].bits & ~pagesize_mask;
- else
- size = run->bin->run_size;
- run_pages = (size >> pagesize_2pow);
-
- /* Mark pages as unallocated in the chunk map. */
- if (dirty) {
- size_t i;
-
- for (i = 0; i < run_pages; i++) {
- assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
- == 0);
- chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
- }
-
- if (chunk->ndirty == 0) {
- arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
- chunk);
- }
- chunk->ndirty += run_pages;
- arena->ndirty += run_pages;
- } else {
- size_t i;
-
- for (i = 0; i < run_pages; i++) {
- chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED);
- }
- }
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-
- /* Try to coalesce forward. */
- if (run_ind + run_pages < chunk_npages &&
- (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
- size_t nrun_size = chunk->map[run_ind+run_pages].bits &
- ~pagesize_mask;
-
- /*
- * Remove successor from runs_avail; the coalesced run is
- * inserted later.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[run_ind+run_pages]);
-
- size += nrun_size;
- run_pages = size >> pagesize_2pow;
-
- assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
- == nrun_size);
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
- }
-
- /* Try to coalesce backward. */
- if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
- CHUNK_MAP_ALLOCATED) == 0) {
- size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
-
- run_ind -= prun_size >> pagesize_2pow;
-
- /*
- * Remove predecessor from runs_avail; the coalesced run is
- * inserted later.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[run_ind]);
-
- size += prun_size;
- run_pages = size >> pagesize_2pow;
-
- assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
- prun_size);
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
- }
-
- /* Insert into runs_avail, now that coalescing is complete. */
- arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
-
- /* Deallocate chunk if it is now completely unused. */
- if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
- CHUNK_MAP_ALLOCATED)) == arena_maxclass)
- arena_chunk_dealloc(arena, chunk);
-
- /* Enforce opt_dirty_max. */
- if (arena->ndirty > opt_dirty_max)
- arena_purge(arena);
-}
-
-static void
-arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
- size_t oldsize, size_t newsize)
-{
- size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
- size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
-
- assert(oldsize > newsize);
-
- /*
- * Update the chunk map so that arena_run_dalloc() can treat the
- * leading run as separately allocated.
- */
- chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
-
- arena_run_dalloc(arena, run, false);
-}
-
-static void
-arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
- size_t oldsize, size_t newsize, bool dirty)
-{
- size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
- size_t npages = newsize >> pagesize_2pow;
-
- assert(oldsize > newsize);
-
- /*
- * Update the chunk map so that arena_run_dalloc() can treat the
- * trailing run as separately allocated.
- */
- chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
- | CHUNK_MAP_ALLOCATED;
-
- arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
- dirty);
-}
-
-static arena_run_t *
-arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
-{
- arena_chunk_map_t *mapelm;
- arena_run_t *run;
- unsigned i, remainder;
-
- /* Look for a usable run. */
- mapelm = arena_run_tree_first(&bin->runs);
- if (mapelm != NULL) {
- /* run is guaranteed to have available space. */
- arena_run_tree_remove(&bin->runs, mapelm);
- run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-#ifdef MALLOC_STATS
- bin->stats.reruns++;
-#endif
- return (run);
- }
- /* No existing runs have any space available. */
-
- /* Allocate a new run. */
- run = arena_run_alloc(arena, bin->run_size, false, false);
- if (run == NULL)
- return (NULL);
-
- /* Initialize run internals. */
- run->bin = bin;
-
- for (i = 0; i < bin->regs_mask_nelms - 1; i++)
- run->regs_mask[i] = UINT_MAX;
- remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
- if (remainder == 0)
- run->regs_mask[i] = UINT_MAX;
- else {
- /* The last element has spare bits that need to be unset. */
- run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
- - remainder));
- }
-
- run->regs_minelm = 0;
-
- run->nfree = bin->nregs;
-#ifdef MALLOC_DEBUG
- run->magic = ARENA_RUN_MAGIC;
-#endif
-
-#ifdef MALLOC_STATS
- bin->stats.nruns++;
- bin->stats.curruns++;
- if (bin->stats.curruns > bin->stats.highruns)
- bin->stats.highruns = bin->stats.curruns;
-#endif
- return (run);
-}
-
-/* bin->runcur must have space available before this function is called. */
-static inline void *
-arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
-{
- void *ret;
-
- (void)arena; /* XXX */
- assert(run->magic == ARENA_RUN_MAGIC);
- assert(run->nfree > 0);
-
- ret = arena_run_reg_alloc(run, bin);
- assert(ret != NULL);
- run->nfree--;
-
- return (ret);
-}
-
-/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
-static void *
-arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
-{
-
- bin->runcur = arena_bin_nonfull_run_get(arena, bin);
- if (bin->runcur == NULL)
- return (NULL);
- assert(bin->runcur->magic == ARENA_RUN_MAGIC);
- assert(bin->runcur->nfree > 0);
-
- return (arena_bin_malloc_easy(arena, bin, bin->runcur));
-}
-
-/*
- * Calculate bin->run_size such that it meets the following constraints:
- *
- * *) bin->run_size >= min_run_size
- * *) bin->run_size <= arena_maxclass
- * *) bin->run_size <= RUN_MAX_SMALL
- * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
- *
- * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
- * also calculated here, since these settings are all interdependent.
- */
-static size_t
-arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
-{
- size_t try_run_size, good_run_size;
- unsigned good_nregs, good_mask_nelms, good_reg0_offset;
- unsigned try_nregs, try_mask_nelms, try_reg0_offset;
-
- assert(min_run_size >= pagesize);
- assert(min_run_size <= arena_maxclass);
- assert(min_run_size <= RUN_MAX_SMALL);
-
- /*
- * Calculate known-valid settings before entering the run_size
- * expansion loop, so that the first part of the loop always copies
- * valid settings.
- *
- * The do..while loop iteratively reduces the number of regions until
- * the run header and the regions no longer overlap. A closed formula
- * would be quite messy, since there is an interdependency between the
- * header's mask length and the number of regions.
- */
- try_run_size = min_run_size;
- try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
- + 1; /* Counter-act try_nregs-- in loop. */
- do {
- try_nregs--;
- try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
- ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
- try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
- } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
- > try_reg0_offset);
-
- /* run_size expansion loop. */
- do {
- /*
- * Copy valid settings before trying more aggressive settings.
- */
- good_run_size = try_run_size;
- good_nregs = try_nregs;
- good_mask_nelms = try_mask_nelms;
- good_reg0_offset = try_reg0_offset;
-
- /* Try more aggressive settings. */
- try_run_size += pagesize;
- try_nregs = ((try_run_size - sizeof(arena_run_t)) /
- bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
- do {
- try_nregs--;
- try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
- ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
- 1 : 0);
- try_reg0_offset = try_run_size - (try_nregs *
- bin->reg_size);
- } while (sizeof(arena_run_t) + (sizeof(unsigned) *
- (try_mask_nelms - 1)) > try_reg0_offset);
- } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
- && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
- && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
-
- assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
- <= good_reg0_offset);
- assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
-
- /* Copy final settings. */
- bin->run_size = good_run_size;
- bin->nregs = good_nregs;
- bin->regs_mask_nelms = good_mask_nelms;
- bin->reg0_offset = good_reg0_offset;
-
- return (good_run_size);
-}
-
-#ifdef MALLOC_BALANCE
-static inline void
-arena_lock_balance(arena_t *arena)
-{
- unsigned contention;
-
- contention = malloc_spin_lock(&arena->lock);
- if (narenas > 1) {
- /*
- * Calculate the exponentially averaged contention for this
- * arena. Due to integer math always rounding down, this value
- * decays somewhat faster than normal.
- */
- arena->contention = (((uint64_t)arena->contention
- * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
- + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
- if (arena->contention >= opt_balance_threshold)
- arena_lock_balance_hard(arena);
- }
-}
-
-static void
-arena_lock_balance_hard(arena_t *arena)
-{
- uint32_t ind;
-
- arena->contention = 0;
-#ifdef MALLOC_STATS
- arena->stats.nbalance++;
-#endif
- ind = PRN(balance, narenas_2pow);
- if (arenas[ind] != NULL)
- arenas_map = arenas[ind];
- else {
- malloc_spin_lock(&arenas_lock);
- if (arenas[ind] != NULL)
- arenas_map = arenas[ind];
- else
- arenas_map = arenas_extend(ind);
- malloc_spin_unlock(&arenas_lock);
- }
-}
-#endif
-
-#ifdef MALLOC_MAG
-static inline void *
-mag_alloc(mag_t *mag)
-{
-
- if (mag->nrounds == 0)
- return (NULL);
- mag->nrounds--;
-
- return (mag->rounds[mag->nrounds]);
-}
-
-static void
-mag_load(mag_t *mag)
-{
- arena_t *arena;
- arena_bin_t *bin;
- arena_run_t *run;
- void *round;
- size_t i;
-
- arena = choose_arena();
- bin = &arena->bins[mag->binind];
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- for (i = mag->nrounds; i < max_rounds; i++) {
- if ((run = bin->runcur) != NULL && run->nfree > 0)
- round = arena_bin_malloc_easy(arena, bin, run);
- else
- round = arena_bin_malloc_hard(arena, bin);
- if (round == NULL)
- break;
- mag->rounds[i] = round;
- }
-#ifdef MALLOC_STATS
- bin->stats.nmags++;
- arena->stats.nmalloc_small += (i - mag->nrounds);
- arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
-#endif
- malloc_spin_unlock(&arena->lock);
- mag->nrounds = i;
-}
-
-static inline void *
-mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
-{
- void *ret;
- bin_mags_t *bin_mags;
- mag_t *mag;
- size_t binind;
-
- binind = size2bin[size];
- assert(binind < nbins);
- bin_mags = &rack->bin_mags[binind];
-
- mag = bin_mags->curmag;
- if (mag == NULL) {
- /* Create an initial magazine for this size class. */
- assert(bin_mags->sparemag == NULL);
- mag = mag_create(choose_arena(), binind);
- if (mag == NULL)
- return (NULL);
- bin_mags->curmag = mag;
- mag_load(mag);
- }
-
- ret = mag_alloc(mag);
- if (ret == NULL) {
- if (bin_mags->sparemag != NULL) {
- if (bin_mags->sparemag->nrounds > 0) {
- /* Swap magazines. */
- bin_mags->curmag = bin_mags->sparemag;
- bin_mags->sparemag = mag;
- mag = bin_mags->curmag;
- } else {
- /* Reload the current magazine. */
- mag_load(mag);
- }
- } else {
- /* Create a second magazine. */
- mag = mag_create(choose_arena(), binind);
- if (mag == NULL)
- return (NULL);
- mag_load(mag);
- bin_mags->sparemag = bin_mags->curmag;
- bin_mags->curmag = mag;
- }
- ret = mag_alloc(mag);
- if (ret == NULL)
- return (NULL);
- }
-
- if (zero == false) {
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
- } else
- memset(ret, 0, size);
-
- return (ret);
-}
-#endif
-
-static inline void *
-arena_malloc_small(arena_t *arena, size_t size, bool zero)
-{
- void *ret;
- arena_bin_t *bin;
- arena_run_t *run;
- size_t binind;
-
- binind = size2bin[size];
- assert(binind < nbins);
- bin = &arena->bins[binind];
- size = bin->reg_size;
-
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- if ((run = bin->runcur) != NULL && run->nfree > 0)
- ret = arena_bin_malloc_easy(arena, bin, run);
- else
- ret = arena_bin_malloc_hard(arena, bin);
-
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-
-#ifdef MALLOC_STATS
- bin->stats.nrequests++;
- arena->stats.nmalloc_small++;
- arena->stats.allocated_small += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- if (zero == false) {
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
- } else
- memset(ret, 0, size);
-
- return (ret);
-}
-
-static void *
-arena_malloc_large(arena_t *arena, size_t size, bool zero)
-{
- void *ret;
-
- /* Large allocation. */
- size = PAGE_CEILING(size);
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- ret = (void *)arena_run_alloc(arena, size, true, zero);
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-#ifdef MALLOC_STATS
- arena->stats.nmalloc_large++;
- arena->stats.allocated_large += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- if (zero == false) {
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
- }
-
- return (ret);
-}
-
-static inline void *
-arena_malloc(arena_t *arena, size_t size, bool zero)
-{
-
- assert(arena != NULL);
- assert(arena->magic == ARENA_MAGIC);
- assert(size != 0);
- assert(QUANTUM_CEILING(size) <= arena_maxclass);
-
- if (size <= bin_maxclass) {
-#ifdef MALLOC_MAG
- if (__isthreaded && opt_mag) {
- mag_rack_t *rack = mag_rack;
- if (rack == NULL) {
- rack = mag_rack_create(arena);
- if (rack == NULL)
- return (NULL);
- mag_rack = rack;
- }
- return (mag_rack_alloc(rack, size, zero));
- } else
-#endif
- return (arena_malloc_small(arena, size, zero));
- } else
- return (arena_malloc_large(arena, size, zero));
-}
-
-static inline void *
-imalloc(size_t size)
-{
-
- assert(size != 0);
-
- if (size <= arena_maxclass)
- return (arena_malloc(choose_arena(), size, false));
- else
- return (huge_malloc(size, false));
-}
-
-static inline void *
-icalloc(size_t size)
-{
-
- if (size <= arena_maxclass)
- return (arena_malloc(choose_arena(), size, true));
- else
- return (huge_malloc(size, true));
-}
-
-/* Only handles large allocations that require more than page alignment. */
-static void *
-arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
-{
- void *ret;
- size_t offset;
- arena_chunk_t *chunk;
-
- assert((size & pagesize_mask) == 0);
- assert((alignment & pagesize_mask) == 0);
-
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
-
- offset = (uintptr_t)ret & (alignment - 1);
- assert((offset & pagesize_mask) == 0);
- assert(offset < alloc_size);
- if (offset == 0)
- arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
- else {
- size_t leadsize, trailsize;
-
- leadsize = alignment - offset;
- if (leadsize > 0) {
- arena_run_trim_head(arena, chunk, ret, alloc_size,
- alloc_size - leadsize);
- ret = (void *)((uintptr_t)ret + leadsize);
- }
-
- trailsize = alloc_size - leadsize - size;
- if (trailsize != 0) {
- /* Trim trailing space. */
- assert(trailsize < alloc_size);
- arena_run_trim_tail(arena, chunk, ret, size + trailsize,
- size, false);
- }
- }
-
-#ifdef MALLOC_STATS
- arena->stats.nmalloc_large++;
- arena->stats.allocated_large += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
- return (ret);
-}
-
-static inline void *
-ipalloc(size_t alignment, size_t size)
-{
- void *ret;
- size_t ceil_size;
-
- /*
- * Round size up to the nearest multiple of alignment.
- *
- * This done, we can take advantage of the fact that for each small
- * size class, every object is aligned at the smallest power of two
- * that is non-zero in the base two representation of the size. For
- * example:
- *
- * Size | Base 2 | Minimum alignment
- * -----+----------+------------------
- * 96 | 1100000 | 32
- * 144 | 10100000 | 32
- * 192 | 11000000 | 64
- *
- * Depending on runtime settings, it is possible that arena_malloc()
- * will further round up to a power of two, but that never causes
- * correctness issues.
- */
- ceil_size = (size + (alignment - 1)) & (-alignment);
- /*
- * (ceil_size < size) protects against the combination of maximal
- * alignment and size greater than maximal alignment.
- */
- if (ceil_size < size) {
- /* size_t overflow. */
- return (NULL);
- }
-
- if (ceil_size <= pagesize || (alignment <= pagesize
- && ceil_size <= arena_maxclass))
- ret = arena_malloc(choose_arena(), ceil_size, false);
- else {
- size_t run_size;
-
- /*
- * We can't achieve subpage alignment, so round up alignment
- * permanently; it makes later calculations simpler.
- */
- alignment = PAGE_CEILING(alignment);
- ceil_size = PAGE_CEILING(size);
- /*
- * (ceil_size < size) protects against very large sizes within
- * pagesize of SIZE_T_MAX.
- *
- * (ceil_size + alignment < ceil_size) protects against the
- * combination of maximal alignment and ceil_size large enough
- * to cause overflow. This is similar to the first overflow
- * check above, but it needs to be repeated due to the new
- * ceil_size value, which may now be *equal* to maximal
- * alignment, whereas before we only detected overflow if the
- * original size was *greater* than maximal alignment.
- */
- if (ceil_size < size || ceil_size + alignment < ceil_size) {
- /* size_t overflow. */
- return (NULL);
- }
-
- /*
- * Calculate the size of the over-size run that arena_palloc()
- * would need to allocate in order to guarantee the alignment.
- */
- if (ceil_size >= alignment)
- run_size = ceil_size + alignment - pagesize;
- else {
- /*
- * It is possible that (alignment << 1) will cause
- * overflow, but it doesn't matter because we also
- * subtract pagesize, which in the case of overflow
- * leaves us with a very large run_size. That causes
- * the first conditional below to fail, which means
- * that the bogus run_size value never gets used for
- * anything important.
- */
- run_size = (alignment << 1) - pagesize;
- }
-
- if (run_size <= arena_maxclass) {
- ret = arena_palloc(choose_arena(), alignment, ceil_size,
- run_size);
- } else if (alignment <= chunksize)
- ret = huge_malloc(ceil_size, false);
- else
- ret = huge_palloc(alignment, ceil_size);
- }
-
- assert(((uintptr_t)ret & (alignment - 1)) == 0);
- return (ret);
-}
-
-/* Return the size of the allocation pointed to by ptr. */
-static size_t
-arena_salloc(const void *ptr)
-{
- size_t ret;
- arena_chunk_t *chunk;
- size_t pageind, mapbits;
-
- assert(ptr != NULL);
- assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
- mapbits = chunk->map[pageind].bits;
- assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
- if ((mapbits & CHUNK_MAP_LARGE) == 0) {
- arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
- assert(run->magic == ARENA_RUN_MAGIC);
- ret = run->bin->reg_size;
- } else {
- ret = mapbits & ~pagesize_mask;
- assert(ret != 0);
- }
-
- return (ret);
-}
-
-static inline size_t
-isalloc(const void *ptr)
-{
- size_t ret;
- arena_chunk_t *chunk;
-
- assert(ptr != NULL);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- if (chunk != ptr) {
- /* Region. */
- assert(chunk->arena->magic == ARENA_MAGIC);
-
- ret = arena_salloc(ptr);
- } else {
- extent_node_t *node, key;
-
- /* Chunk (huge allocation). */
-
- malloc_mutex_lock(&huge_mtx);
-
- /* Extract from tree of huge allocations. */
- key.addr = __DECONST(void *, ptr);
- node = extent_tree_ad_search(&huge, &key);
- assert(node != NULL);
-
- ret = node->size;
-
- malloc_mutex_unlock(&huge_mtx);
- }
-
- return (ret);
-}
-
-static inline void
-arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- arena_chunk_map_t *mapelm)
-{
- arena_run_t *run;
- arena_bin_t *bin;
- size_t size;
-
- run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
- assert(run->magic == ARENA_RUN_MAGIC);
- bin = run->bin;
- size = bin->reg_size;
-
- if (opt_junk)
- memset(ptr, 0x5a, size);
-
- arena_run_reg_dalloc(run, bin, ptr, size);
- run->nfree++;
-
- if (run->nfree == bin->nregs) {
- /* Deallocate run. */
- if (run == bin->runcur)
- bin->runcur = NULL;
- else if (bin->nregs != 1) {
- size_t run_pageind = (((uintptr_t)run -
- (uintptr_t)chunk)) >> pagesize_2pow;
- arena_chunk_map_t *run_mapelm =
- &chunk->map[run_pageind];
- /*
- * This block's conditional is necessary because if the
- * run only contains one region, then it never gets
- * inserted into the non-full runs tree.
- */
- arena_run_tree_remove(&bin->runs, run_mapelm);
- }
-#ifdef MALLOC_DEBUG
- run->magic = 0;
-#endif
- arena_run_dalloc(arena, run, true);
-#ifdef MALLOC_STATS
- bin->stats.curruns--;
-#endif
- } else if (run->nfree == 1 && run != bin->runcur) {
- /*
- * Make sure that bin->runcur always refers to the lowest
- * non-full run, if one exists.
- */
- if (bin->runcur == NULL)
- bin->runcur = run;
- else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
- /* Switch runcur. */
- if (bin->runcur->nfree > 0) {
- arena_chunk_t *runcur_chunk =
- CHUNK_ADDR2BASE(bin->runcur);
- size_t runcur_pageind =
- (((uintptr_t)bin->runcur -
- (uintptr_t)runcur_chunk)) >> pagesize_2pow;
- arena_chunk_map_t *runcur_mapelm =
- &runcur_chunk->map[runcur_pageind];
-
- /* Insert runcur. */
- arena_run_tree_insert(&bin->runs,
- runcur_mapelm);
- }
- bin->runcur = run;
- } else {
- size_t run_pageind = (((uintptr_t)run -
- (uintptr_t)chunk)) >> pagesize_2pow;
- arena_chunk_map_t *run_mapelm =
- &chunk->map[run_pageind];
-
- assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
- NULL);
- arena_run_tree_insert(&bin->runs, run_mapelm);
- }
- }
-#ifdef MALLOC_STATS
- arena->stats.allocated_small -= size;
- arena->stats.ndalloc_small++;
-#endif
-}
-
-#ifdef MALLOC_MAG
-static void
-mag_unload(mag_t *mag)
-{
- arena_chunk_t *chunk;
- arena_t *arena;
- void *round;
- size_t i, ndeferred, nrounds;
-
- for (ndeferred = mag->nrounds; ndeferred > 0;) {
- nrounds = ndeferred;
- /* Lock the arena associated with the first round. */
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
- arena = chunk->arena;
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- /* Deallocate every round that belongs to the locked arena. */
- for (i = ndeferred = 0; i < nrounds; i++) {
- round = mag->rounds[i];
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
- if (chunk->arena == arena) {
- size_t pageind = (((uintptr_t)round -
- (uintptr_t)chunk) >> pagesize_2pow);
- arena_chunk_map_t *mapelm =
- &chunk->map[pageind];
- arena_dalloc_small(arena, chunk, round, mapelm);
- } else {
- /*
- * This round was allocated via a different
- * arena than the one that is currently locked.
- * Stash the round, so that it can be handled
- * in a future pass.
- */
- mag->rounds[ndeferred] = round;
- ndeferred++;
- }
- }
- malloc_spin_unlock(&arena->lock);
- }
-
- mag->nrounds = 0;
-}
-
-static inline void
-mag_rack_dalloc(mag_rack_t *rack, void *ptr)
-{
- arena_t *arena;
- arena_chunk_t *chunk;
- arena_run_t *run;
- arena_bin_t *bin;
- bin_mags_t *bin_mags;
- mag_t *mag;
- size_t pageind, binind;
- arena_chunk_map_t *mapelm;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- arena = chunk->arena;
- pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
- run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
- assert(run->magic == ARENA_RUN_MAGIC);
- bin = run->bin;
- binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
- sizeof(arena_bin_t);
- assert(binind < nbins);
-
- if (opt_junk)
- memset(ptr, 0x5a, arena->bins[binind].reg_size);
-
- bin_mags = &rack->bin_mags[binind];
- mag = bin_mags->curmag;
- if (mag == NULL) {
- /* Create an initial magazine for this size class. */
- assert(bin_mags->sparemag == NULL);
- mag = mag_create(choose_arena(), binind);
- if (mag == NULL) {
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, ptr, mapelm);
- malloc_spin_unlock(&arena->lock);
- return;
- }
- bin_mags->curmag = mag;
- }
-
- if (mag->nrounds == max_rounds) {
- if (bin_mags->sparemag != NULL) {
- if (bin_mags->sparemag->nrounds < max_rounds) {
- /* Swap magazines. */
- bin_mags->curmag = bin_mags->sparemag;
- bin_mags->sparemag = mag;
- mag = bin_mags->curmag;
- } else {
- /* Unload the current magazine. */
- mag_unload(mag);
- }
- } else {
- /* Create a second magazine. */
- mag = mag_create(choose_arena(), binind);
- if (mag == NULL) {
- mag = rack->bin_mags[binind].curmag;
- mag_unload(mag);
- } else {
- bin_mags->sparemag = bin_mags->curmag;
- bin_mags->curmag = mag;
- }
- }
- assert(mag->nrounds < max_rounds);
- }
- mag->rounds[mag->nrounds] = ptr;
- mag->nrounds++;
-}
-#endif
-
-static void
-arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
- /* Large allocation. */
- malloc_spin_lock(&arena->lock);
-
-#ifndef MALLOC_STATS
- if (opt_junk)
-#endif
- {
- size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
- pagesize_2pow;
- size_t size = chunk->map[pageind].bits & ~pagesize_mask;
-
-#ifdef MALLOC_STATS
- if (opt_junk)
-#endif
- memset(ptr, 0x5a, size);
-#ifdef MALLOC_STATS
- arena->stats.allocated_large -= size;
-#endif
- }
-#ifdef MALLOC_STATS
- arena->stats.ndalloc_large++;
-#endif
-
- arena_run_dalloc(arena, (arena_run_t *)ptr, true);
- malloc_spin_unlock(&arena->lock);
-}
-
-static inline void
-arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
- size_t pageind;
- arena_chunk_map_t *mapelm;
-
- assert(arena != NULL);
- assert(arena->magic == ARENA_MAGIC);
- assert(chunk->arena == arena);
- assert(ptr != NULL);
- assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
- pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
- assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
- if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
- /* Small allocation. */
-#ifdef MALLOC_MAG
- if (__isthreaded && opt_mag) {
- mag_rack_t *rack = mag_rack;
- if (rack == NULL) {
- rack = mag_rack_create(arena);
- if (rack == NULL) {
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, ptr,
- mapelm);
- malloc_spin_unlock(&arena->lock);
- }
- mag_rack = rack;
- }
- mag_rack_dalloc(rack, ptr);
- } else {
-#endif
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, ptr, mapelm);
- malloc_spin_unlock(&arena->lock);
-#ifdef MALLOC_MAG
- }
-#endif
- } else
- arena_dalloc_large(arena, chunk, ptr);
-}
-
-static inline void
-idalloc(void *ptr)
-{
- arena_chunk_t *chunk;
-
- assert(ptr != NULL);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- if (chunk != ptr)
- arena_dalloc(chunk->arena, chunk, ptr);
- else
- huge_dalloc(ptr);
-}
-
-static void
-arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- size_t size, size_t oldsize)
-{
-
- assert(size < oldsize);
-
- /*
- * Shrink the run, and make trailing pages available for other
- * allocations.
- */
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
- true);
-#ifdef MALLOC_STATS
- arena->stats.allocated_large -= oldsize - size;
-#endif
- malloc_spin_unlock(&arena->lock);
-}
-
-static bool
-arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- size_t size, size_t oldsize)
-{
- size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
- size_t npages = oldsize >> pagesize_2pow;
-
- assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
-
- /* Try to extend the run. */
- assert(size > oldsize);
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
- & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
- ~pagesize_mask) >= size - oldsize) {
- /*
- * The next run is available and sufficiently large. Split the
- * following run, then merge the first part with the existing
- * allocation.
- */
- arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
- ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
- false);
-
- chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
-
-#ifdef MALLOC_STATS
- arena->stats.allocated_large += size - oldsize;
-#endif
- malloc_spin_unlock(&arena->lock);
- return (false);
- }
- malloc_spin_unlock(&arena->lock);
-
- return (true);
-}
-
-/*
- * Try to resize a large allocation, in order to avoid copying. This will
- * always fail if growing an object, and the following run is already in use.
- */
-static bool
-arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
-{
- size_t psize;
-
- psize = PAGE_CEILING(size);
- if (psize == oldsize) {
- /* Same size class. */
- if (opt_junk && size < oldsize) {
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
- size);
- }
- return (false);
- } else {
- arena_chunk_t *chunk;
- arena_t *arena;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- arena = chunk->arena;
- assert(arena->magic == ARENA_MAGIC);
-
- if (psize < oldsize) {
- /* Fill before shrinking in order avoid a race. */
- if (opt_junk) {
- memset((void *)((uintptr_t)ptr + size), 0x5a,
- oldsize - size);
- }
- arena_ralloc_large_shrink(arena, chunk, ptr, psize,
- oldsize);
- return (false);
- } else {
- bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
- psize, oldsize);
- if (ret == false && opt_zero) {
- memset((void *)((uintptr_t)ptr + oldsize), 0,
- size - oldsize);
- }
- return (ret);
- }
- }
-}
-
-static void *
-arena_ralloc(void *ptr, size_t size, size_t oldsize)
-{
- void *ret;
- size_t copysize;
-
- /* Try to avoid moving the allocation. */
- if (size <= bin_maxclass) {
- if (oldsize <= bin_maxclass && size2bin[size] ==
- size2bin[oldsize])
- goto IN_PLACE;
- } else {
- if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
- assert(size > bin_maxclass);
- if (arena_ralloc_large(ptr, size, oldsize) == false)
- return (ptr);
- }
- }
-
- /*
- * If we get here, then size and oldsize are different enough that we
- * need to move the object. In that case, fall back to allocating new
- * space and copying.
- */
- ret = arena_malloc(choose_arena(), size, false);
- if (ret == NULL)
- return (NULL);
-
- /* Junk/zero-filling were already done by arena_malloc(). */
- copysize = (size < oldsize) ? size : oldsize;
- memcpy(ret, ptr, copysize);
- idalloc(ptr);
- return (ret);
-IN_PLACE:
- if (opt_junk && size < oldsize)
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
- else if (opt_zero && size > oldsize)
- memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
- return (ptr);
-}
-
-static inline void *
-iralloc(void *ptr, size_t size)
-{
- size_t oldsize;
-
- assert(ptr != NULL);
- assert(size != 0);
-
- oldsize = isalloc(ptr);
-
- if (size <= arena_maxclass)
- return (arena_ralloc(ptr, size, oldsize));
- else
- return (huge_ralloc(ptr, size, oldsize));
-}
-
-static bool
-arena_new(arena_t *arena)
-{
- unsigned i;
- arena_bin_t *bin;
- size_t prev_run_size;
-
- if (malloc_spin_init(&arena->lock))
- return (true);
-
-#ifdef MALLOC_STATS
- memset(&arena->stats, 0, sizeof(arena_stats_t));
-#endif
-
- /* Initialize chunks. */
- arena_chunk_tree_dirty_new(&arena->chunks_dirty);
- arena->spare = NULL;
-
- arena->ndirty = 0;
-
- arena_avail_tree_new(&arena->runs_avail);
-
-#ifdef MALLOC_BALANCE
- arena->contention = 0;
-#endif
-
- /* Initialize bins. */
- prev_run_size = pagesize;
-
- i = 0;
-#ifdef MALLOC_TINY
- /* (2^n)-spaced tiny bins. */
- for (; i < ntbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = (1U << (TINY_MIN_2POW + i));
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-#endif
-
- /* Quantum-spaced bins. */
- for (; i < ntbins + nqbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
- /* Cacheline-spaced bins. */
- for (; i < ntbins + nqbins + ncbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
- CACHELINE_2POW);
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
- /* Subpage-spaced bins. */
- for (; i < nbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
- << SUBPAGE_2POW);
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
-#ifdef MALLOC_DEBUG
- arena->magic = ARENA_MAGIC;
-#endif
-
- return (false);
-}
-
-/* Create a new arena and insert it into the arenas array at index ind. */
-static arena_t *
-arenas_extend(unsigned ind)
-{
- arena_t *ret;
-
- /* Allocate enough space for trailing bins. */
- ret = (arena_t *)base_alloc(sizeof(arena_t)
- + (sizeof(arena_bin_t) * (nbins - 1)));
- if (ret != NULL && arena_new(ret) == false) {
- arenas[ind] = ret;
- return (ret);
- }
- /* Only reached if there is an OOM error. */
-
- /*
- * OOM here is quite inconvenient to propagate, since dealing with it
- * would require a check for failure in the fast path. Instead, punt
- * by using arenas[0]. In practice, this is an extremely unlikely
- * failure.
- */
- _malloc_message(_getprogname(),
- ": (malloc) Error initializing arena\n", "", "");
- if (opt_abort)
- abort();
-
- return (arenas[0]);
-}
-
-#ifdef MALLOC_MAG
-static mag_t *
-mag_create(arena_t *arena, size_t binind)
-{
- mag_t *ret;
-
- if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
- bin_maxclass) {
- ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
- * (max_rounds - 1)), false);
- } else {
- ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
- 1)));
- }
- if (ret == NULL)
- return (NULL);
- ret->binind = binind;
- ret->nrounds = 0;
-
- return (ret);
-}
-
-static void
-mag_destroy(mag_t *mag)
-{
- arena_t *arena;
- arena_chunk_t *chunk;
- size_t pageind;
- arena_chunk_map_t *mapelm;
-
- chunk = CHUNK_ADDR2BASE(mag);
- arena = chunk->arena;
- pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
-
- assert(mag->nrounds == 0);
- if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
- bin_maxclass) {
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, mag, mapelm);
- malloc_spin_unlock(&arena->lock);
- } else
- idalloc(mag);
-}
-
-static mag_rack_t *
-mag_rack_create(arena_t *arena)
-{
-
- assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
- bin_maxclass);
- return (arena_malloc_small(arena, sizeof(mag_rack_t) +
- (sizeof(bin_mags_t) * (nbins - 1)), true));
-}
-
-static void
-mag_rack_destroy(mag_rack_t *rack)
-{
- arena_t *arena;
- arena_chunk_t *chunk;
- bin_mags_t *bin_mags;
- size_t i, pageind;
- arena_chunk_map_t *mapelm;
-
- for (i = 0; i < nbins; i++) {
- bin_mags = &rack->bin_mags[i];
- if (bin_mags->curmag != NULL) {
- assert(bin_mags->curmag->binind == i);
- mag_unload(bin_mags->curmag);
- mag_destroy(bin_mags->curmag);
- }
- if (bin_mags->sparemag != NULL) {
- assert(bin_mags->sparemag->binind == i);
- mag_unload(bin_mags->sparemag);
- mag_destroy(bin_mags->sparemag);
- }
- }
-
- chunk = CHUNK_ADDR2BASE(rack);
- arena = chunk->arena;
- pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
-
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, rack, mapelm);
- malloc_spin_unlock(&arena->lock);
-}
-#endif
-
-/*
- * End arena.
- */
-/******************************************************************************/
-/*
- * Begin general internal functions.
- */
-
-static void *
-huge_malloc(size_t size, bool zero)
-{
- void *ret;
- size_t csize;
- extent_node_t *node;
-
- /* Allocate one or more contiguous chunks for this request. */
-
- csize = CHUNK_CEILING(size);
- if (csize == 0) {
- /* size is large enough to cause size_t wrap-around. */
- return (NULL);
- }
-
- /* Allocate an extent node with which to track the chunk. */
- node = base_node_alloc();
- if (node == NULL)
- return (NULL);
-
- ret = chunk_alloc(csize, zero);
- if (ret == NULL) {
- base_node_dealloc(node);
- return (NULL);
- }
-
- /* Insert node into huge. */
- node->addr = ret;
- node->size = csize;
-
- malloc_mutex_lock(&huge_mtx);
- extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
- huge_nmalloc++;
- huge_allocated += csize;
-#endif
- malloc_mutex_unlock(&huge_mtx);
-
- if (zero == false) {
- if (opt_junk)
- memset(ret, 0xa5, csize);
- else if (opt_zero)
- memset(ret, 0, csize);
- }
-
- return (ret);
-}
-
-/* Only handles large allocations that require more than chunk alignment. */
-static void *
-huge_palloc(size_t alignment, size_t size)
-{
- void *ret;
- size_t alloc_size, chunk_size, offset;
- extent_node_t *node;
-
- /*
- * This allocation requires alignment that is even larger than chunk
- * alignment. This means that huge_malloc() isn't good enough.
- *
- * Allocate almost twice as many chunks as are demanded by the size or
- * alignment, in order to assure the alignment can be achieved, then
- * unmap leading and trailing chunks.
- */
- assert(alignment >= chunksize);
-
- chunk_size = CHUNK_CEILING(size);
-
- if (size >= alignment)
- alloc_size = chunk_size + alignment - chunksize;
- else
- alloc_size = (alignment << 1) - chunksize;
-
- /* Allocate an extent node with which to track the chunk. */
- node = base_node_alloc();
- if (node == NULL)
- return (NULL);
-
- ret = chunk_alloc(alloc_size, false);
- if (ret == NULL) {
- base_node_dealloc(node);
- return (NULL);
- }
-
- offset = (uintptr_t)ret & (alignment - 1);
- assert((offset & chunksize_mask) == 0);
- assert(offset < alloc_size);
- if (offset == 0) {
- /* Trim trailing space. */
- chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
- - chunk_size);
- } else {
- size_t trailsize;
-
- /* Trim leading space. */
- chunk_dealloc(ret, alignment - offset);
-
- ret = (void *)((uintptr_t)ret + (alignment - offset));
-
- trailsize = alloc_size - (alignment - offset) - chunk_size;
- if (trailsize != 0) {
- /* Trim trailing space. */
- assert(trailsize < alloc_size);
- chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
- trailsize);
- }
- }
-
- /* Insert node into huge. */
- node->addr = ret;
- node->size = chunk_size;
-
- malloc_mutex_lock(&huge_mtx);
- extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
- huge_nmalloc++;
- huge_allocated += chunk_size;
-#endif
- malloc_mutex_unlock(&huge_mtx);
-
- if (opt_junk)
- memset(ret, 0xa5, chunk_size);
- else if (opt_zero)
- memset(ret, 0, chunk_size);
-
- return (ret);
-}
-
-static void *
-huge_ralloc(void *ptr, size_t size, size_t oldsize)
-{
- void *ret;
- size_t copysize;
-
- /* Avoid moving the allocation if the size class would not change. */
- if (oldsize > arena_maxclass &&
- CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
- if (opt_junk && size < oldsize) {
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
- - size);
- } else if (opt_zero && size > oldsize) {
- memset((void *)((uintptr_t)ptr + oldsize), 0, size
- - oldsize);
- }
- return (ptr);
- }
-
- /*
- * If we get here, then size and oldsize are different enough that we
- * need to use a different size class. In that case, fall back to
- * allocating new space and copying.
- */
- ret = huge_malloc(size, false);
- if (ret == NULL)
- return (NULL);
-
- copysize = (size < oldsize) ? size : oldsize;
- memcpy(ret, ptr, copysize);
- idalloc(ptr);
- return (ret);
-}
-
-static void
-huge_dalloc(void *ptr)
-{
- extent_node_t *node, key;
-
- malloc_mutex_lock(&huge_mtx);
-
- /* Extract from tree of huge allocations. */
- key.addr = ptr;
- node = extent_tree_ad_search(&huge, &key);
- assert(node != NULL);
- assert(node->addr == ptr);
- extent_tree_ad_remove(&huge, node);
-
-#ifdef MALLOC_STATS
- huge_ndalloc++;
- huge_allocated -= node->size;
-#endif
-
- malloc_mutex_unlock(&huge_mtx);
-
- /* Unmap chunk. */
-#ifdef MALLOC_DSS
- if (opt_dss && opt_junk)
- memset(node->addr, 0x5a, node->size);
-#endif
- chunk_dealloc(node->addr, node->size);
-
- base_node_dealloc(node);
-}
-
-static void
-malloc_print_stats(void)
-{
-
- if (opt_print_stats) {
- char s[UMAX2S_BUFSIZE];
- _malloc_message("___ Begin malloc statistics ___\n", "", "",
- "");
- _malloc_message("Assertions ",
-#ifdef NDEBUG
- "disabled",
-#else
- "enabled",
-#endif
- "\n", "");
- _malloc_message("Boolean MALLOC_OPTIONS: ",
- opt_abort ? "A" : "a", "", "");
-#ifdef MALLOC_DSS
- _malloc_message(opt_dss ? "D" : "d", "", "", "");
-#endif
-#ifdef MALLOC_MAG
- _malloc_message(opt_mag ? "G" : "g", "", "", "");
-#endif
- _malloc_message(opt_junk ? "J" : "j", "", "", "");
-#ifdef MALLOC_DSS
- _malloc_message(opt_mmap ? "M" : "m", "", "", "");
-#endif
- _malloc_message(opt_utrace ? "PU" : "Pu",
- opt_sysv ? "V" : "v",
- opt_xmalloc ? "X" : "x",
- opt_zero ? "Z\n" : "z\n");
-
- _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
- _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
-#ifdef MALLOC_BALANCE
- _malloc_message("Arena balance threshold: ",
- umax2s(opt_balance_threshold, s), "\n", "");
-#endif
- _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
- "\n", "");
- _malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
- _malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
- s), "\n", "");
-#ifdef MALLOC_TINY
- _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
- TINY_MIN_2POW), s), "..", "");
- _malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
-#endif
- _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
- s), "..", "");
- _malloc_message(umax2s(qspace_max, s), "]\n", "", "");
- _malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
- s), "..", "");
- _malloc_message(umax2s(cspace_max, s), "]\n", "", "");
- _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
- s), "..", "");
- _malloc_message(umax2s(sspace_max, s), "]\n", "", "");
-#ifdef MALLOC_MAG
- _malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
- "\n", "");
-#endif
- _malloc_message("Max dirty pages per arena: ",
- umax2s(opt_dirty_max, s), "\n", "");
-
- _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
- _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
-
-#ifdef MALLOC_STATS
- {
- size_t allocated, mapped;
-#ifdef MALLOC_BALANCE
- uint64_t nbalance = 0;
-#endif
- unsigned i;
- arena_t *arena;
-
- /* Calculate and print allocated/mapped stats. */
-
- /* arenas. */
- for (i = 0, allocated = 0; i < narenas; i++) {
- if (arenas[i] != NULL) {
- malloc_spin_lock(&arenas[i]->lock);
- allocated +=
- arenas[i]->stats.allocated_small;
- allocated +=
- arenas[i]->stats.allocated_large;
-#ifdef MALLOC_BALANCE
- nbalance += arenas[i]->stats.nbalance;
-#endif
- malloc_spin_unlock(&arenas[i]->lock);
- }
- }
-
- /* huge/base. */
- malloc_mutex_lock(&huge_mtx);
- allocated += huge_allocated;
- mapped = stats_chunks.curchunks * chunksize;
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_mutex_lock(&base_mtx);
- mapped += base_mapped;
- malloc_mutex_unlock(&base_mtx);
-
- malloc_printf("Allocated: %zu, mapped: %zu\n",
- allocated, mapped);
-
-#ifdef MALLOC_BALANCE
- malloc_printf("Arena balance reassignments: %llu\n",
- nbalance);
-#endif
-
- /* Print chunk stats. */
- {
- chunk_stats_t chunks_stats;
-
- malloc_mutex_lock(&huge_mtx);
- chunks_stats = stats_chunks;
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_printf("chunks: nchunks "
- "highchunks curchunks\n");
- malloc_printf(" %13llu%13lu%13lu\n",
- chunks_stats.nchunks,
- chunks_stats.highchunks,
- chunks_stats.curchunks);
- }
-
- /* Print chunk stats. */
- malloc_printf(
- "huge: nmalloc ndalloc allocated\n");
- malloc_printf(" %12llu %12llu %12zu\n",
- huge_nmalloc, huge_ndalloc, huge_allocated);
-
- /* Print stats for each arena. */
- for (i = 0; i < narenas; i++) {
- arena = arenas[i];
- if (arena != NULL) {
- malloc_printf(
- "\narenas[%u]:\n", i);
- malloc_spin_lock(&arena->lock);
- stats_print(arena);
- malloc_spin_unlock(&arena->lock);
- }
- }
- }
-#endif /* #ifdef MALLOC_STATS */
- _malloc_message("--- End malloc statistics ---\n", "", "", "");
- }
-}
-
-#ifdef MALLOC_DEBUG
-static void
-size2bin_validate(void)
-{
- size_t i, size, binind;
-
- assert(size2bin[0] == 0xffU);
- i = 1;
-# ifdef MALLOC_TINY
- /* Tiny. */
- for (; i < (1U << TINY_MIN_2POW); i++) {
- size = pow2_ceil(1U << TINY_MIN_2POW);
- binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
- assert(size2bin[i] == binind);
- }
- for (; i < qspace_min; i++) {
- size = pow2_ceil(i);
- binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
- assert(size2bin[i] == binind);
- }
-# endif
- /* Quantum-spaced. */
- for (; i <= qspace_max; i++) {
- size = QUANTUM_CEILING(i);
- binind = ntbins + (size >> QUANTUM_2POW) - 1;
- assert(size2bin[i] == binind);
- }
- /* Cacheline-spaced. */
- for (; i <= cspace_max; i++) {
- size = CACHELINE_CEILING(i);
- binind = ntbins + nqbins + ((size - cspace_min) >>
- CACHELINE_2POW);
- assert(size2bin[i] == binind);
- }
- /* Sub-page. */
- for (; i <= sspace_max; i++) {
- size = SUBPAGE_CEILING(i);
- binind = ntbins + nqbins + ncbins + ((size - sspace_min)
- >> SUBPAGE_2POW);
- assert(size2bin[i] == binind);
- }
-}
-#endif
-
-static bool
-size2bin_init(void)
-{
-
- if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
- || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
- return (size2bin_init_hard());
-
- size2bin = const_size2bin;
-#ifdef MALLOC_DEBUG
- assert(sizeof(const_size2bin) == bin_maxclass + 1);
- size2bin_validate();
-#endif
- return (false);
-}
-
-static bool
-size2bin_init_hard(void)
-{
- size_t i, size, binind;
- uint8_t *custom_size2bin;
-
- assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
- || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
-
- custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
- if (custom_size2bin == NULL)
- return (true);
-
- custom_size2bin[0] = 0xffU;
- i = 1;
-#ifdef MALLOC_TINY
- /* Tiny. */
- for (; i < (1U << TINY_MIN_2POW); i++) {
- size = pow2_ceil(1U << TINY_MIN_2POW);
- binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
- custom_size2bin[i] = binind;
- }
- for (; i < qspace_min; i++) {
- size = pow2_ceil(i);
- binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
- custom_size2bin[i] = binind;
- }
-#endif
- /* Quantum-spaced. */
- for (; i <= qspace_max; i++) {
- size = QUANTUM_CEILING(i);
- binind = ntbins + (size >> QUANTUM_2POW) - 1;
- custom_size2bin[i] = binind;
- }
- /* Cacheline-spaced. */
- for (; i <= cspace_max; i++) {
- size = CACHELINE_CEILING(i);
- binind = ntbins + nqbins + ((size - cspace_min) >>
- CACHELINE_2POW);
- custom_size2bin[i] = binind;
- }
- /* Sub-page. */
- for (; i <= sspace_max; i++) {
- size = SUBPAGE_CEILING(i);
- binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
- SUBPAGE_2POW);
- custom_size2bin[i] = binind;
- }
-
- size2bin = custom_size2bin;
-#ifdef MALLOC_DEBUG
- size2bin_validate();
-#endif
- return (false);
-}
-
-static unsigned
-malloc_ncpus(void)
-{
- unsigned ret;
- int fd, nread, column;
- char buf[1];
- static const char matchstr[] = "processor\t:";
-
- /*
- * sysconf(3) would be the preferred method for determining the number
- * of CPUs, but it uses malloc internally, which causes untennable
- * recursion during malloc initialization.
- */
- fd = open("/proc/cpuinfo", O_RDONLY);
- if (fd == -1)
- return (1); /* Error. */
- /*
- * Count the number of occurrences of matchstr at the beginnings of
- * lines. This treats hyperthreaded CPUs as multiple processors.
- */
- column = 0;
- ret = 0;
- while (true) {
- nread = read(fd, &buf, sizeof(buf));
- if (nread <= 0)
- break; /* EOF or error. */
-
- if (buf[0] == '\n')
- column = 0;
- else if (column != -1) {
- if (buf[0] == matchstr[column]) {
- column++;
- if (column == sizeof(matchstr) - 1) {
- column = -1;
- ret++;
- }
- } else
- column = -1;
- }
- }
- if (ret == 0)
- ret = 1; /* Something went wrong in the parser. */
- close(fd);
-
- return (ret);
-}
-/*
- * FreeBSD's pthreads implementation calls malloc(3), so the malloc
- * implementation has to take pains to avoid infinite recursion during
- * initialization.
- */
-static inline bool
-malloc_init(void)
-{
-
- if (malloc_initialized == false)
- return (malloc_init_hard());
-
- return (false);
-}
-
-static bool
-malloc_init_hard(void)
-{
- unsigned i;
- int linklen;
- char buf[PATH_MAX + 1];
- const char *opts;
-
- malloc_mutex_lock(&init_lock);
- if (malloc_initialized) {
- /*
- * Another thread initialized the allocator before this one
- * acquired init_lock.
- */
- malloc_mutex_unlock(&init_lock);
- return (false);
- }
-
- /* Get number of CPUs. */
- ncpus = malloc_ncpus();
-
- /* Get page size. */
- {
- long result;
-
- result = sysconf(_SC_PAGESIZE);
- assert(result != -1);
- pagesize = (unsigned)result;
-
- /*
- * We assume that pagesize is a power of 2 when calculating
- * pagesize_mask and pagesize_2pow.
- */
- assert(((result - 1) & result) == 0);
- pagesize_mask = result - 1;
- pagesize_2pow = ffs((int)result) - 1;
- }
-
- for (i = 0; i < 3; i++) {
- unsigned j;
-
- /* Get runtime configuration. */
- switch (i) {
- case 0:
- if ((linklen = readlink("/etc/malloc.conf", buf,
- sizeof(buf) - 1)) != -1) {
- /*
- * Use the contents of the "/etc/malloc.conf"
- * symbolic link's name.
- */
- buf[linklen] = '\0';
- opts = buf;
- } else {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- case 1:
- if (issetugid() == 0 && (opts =
- getenv("MALLOC_OPTIONS")) != NULL) {
- /*
- * Do nothing; opts is already initialized to
- * the value of the MALLOC_OPTIONS environment
- * variable.
- */
- } else {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- case 2:
- if (_malloc_options != NULL) {
- /*
- * Use options that were compiled into the
- * program.
- */
- opts = _malloc_options;
- } else {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- default:
- /* NOTREACHED */
- assert(false);
- }
-
- for (j = 0; opts[j] != '\0'; j++) {
- unsigned k, nreps;
- bool nseen;
-
- /* Parse repetition count, if any. */
- for (nreps = 0, nseen = false;; j++, nseen = true) {
- switch (opts[j]) {
- case '0': case '1': case '2': case '3':
- case '4': case '5': case '6': case '7':
- case '8': case '9':
- nreps *= 10;
- nreps += opts[j] - '0';
- break;
- default:
- goto MALLOC_OUT;
- }
- }
-MALLOC_OUT:
- if (nseen == false)
- nreps = 1;
-
- for (k = 0; k < nreps; k++) {
- switch (opts[j]) {
- case 'a':
- opt_abort = false;
- break;
- case 'A':
- opt_abort = true;
- break;
- case 'b':
-#ifdef MALLOC_BALANCE
- opt_balance_threshold >>= 1;
-#endif
- break;
- case 'B':
-#ifdef MALLOC_BALANCE
- if (opt_balance_threshold == 0)
- opt_balance_threshold = 1;
- else if ((opt_balance_threshold << 1)
- > opt_balance_threshold)
- opt_balance_threshold <<= 1;
-#endif
- break;
- case 'c':
- if (opt_cspace_max_2pow - 1 >
- opt_qspace_max_2pow &&
- opt_cspace_max_2pow >
- CACHELINE_2POW)
- opt_cspace_max_2pow--;
- break;
- case 'C':
- if (opt_cspace_max_2pow < pagesize_2pow
- - 1)
- opt_cspace_max_2pow++;
- break;
- case 'd':
-#ifdef MALLOC_DSS
- opt_dss = false;
-#endif
- break;
- case 'D':
-#ifdef MALLOC_DSS
- opt_dss = true;
-#endif
- break;
- case 'f':
- opt_dirty_max >>= 1;
- break;
- case 'F':
- if (opt_dirty_max == 0)
- opt_dirty_max = 1;
- else if ((opt_dirty_max << 1) != 0)
- opt_dirty_max <<= 1;
- break;
-#ifdef MALLOC_MAG
- case 'g':
- opt_mag = false;
- break;
- case 'G':
- opt_mag = true;
- break;
-#endif
- case 'j':
- opt_junk = false;
- break;
- case 'J':
- opt_junk = true;
- break;
- case 'k':
- /*
- * Chunks always require at least one
- * header page, so chunks can never be
- * smaller than two pages.
- */
- if (opt_chunk_2pow > pagesize_2pow + 1)
- opt_chunk_2pow--;
- break;
- case 'K':
- if (opt_chunk_2pow + 1 <
- (sizeof(size_t) << 3))
- opt_chunk_2pow++;
- break;
- case 'm':
-#ifdef MALLOC_DSS
- opt_mmap = false;
-#endif
- break;
- case 'M':
-#ifdef MALLOC_DSS
- opt_mmap = true;
-#endif
- break;
- case 'n':
- opt_narenas_lshift--;
- break;
- case 'N':
- opt_narenas_lshift++;
- break;
- case 'p':
- opt_print_stats = false;
- break;
- case 'P':
- opt_print_stats = true;
- break;
- case 'q':
- if (opt_qspace_max_2pow > QUANTUM_2POW)
- opt_qspace_max_2pow--;
- break;
- case 'Q':
- if (opt_qspace_max_2pow + 1 <
- opt_cspace_max_2pow)
- opt_qspace_max_2pow++;
- break;
-#ifdef MALLOC_MAG
- case 'R':
- if (opt_mag_size_2pow + 1 < (8U <<
- SIZEOF_PTR_2POW))
- opt_mag_size_2pow++;
- break;
- case 'r':
- /*
- * Make sure there's always at least
- * one round per magazine.
- */
- if ((1U << (opt_mag_size_2pow-1)) >=
- sizeof(mag_t))
- opt_mag_size_2pow--;
- break;
-#endif
- case 'u':
- opt_utrace = false;
- break;
- case 'U':
- opt_utrace = true;
- break;
- case 'v':
- opt_sysv = false;
- break;
- case 'V':
- opt_sysv = true;
- break;
- case 'x':
- opt_xmalloc = false;
- break;
- case 'X':
- opt_xmalloc = true;
- break;
- case 'z':
- opt_zero = false;
- break;
- case 'Z':
- opt_zero = true;
- break;
- default: {
- char cbuf[2];
-
- cbuf[0] = opts[j];
- cbuf[1] = '\0';
- _malloc_message(_getprogname(),
- ": (malloc) Unsupported character "
- "in malloc options: '", cbuf,
- "'\n");
- }
- }
- }
- }
- }
-
-#ifdef MALLOC_DSS
- /* Make sure that there is some method for acquiring memory. */
- if (opt_dss == false && opt_mmap == false)
- opt_mmap = true;
-#endif
-
- /* Take care to call atexit() only once. */
- if (opt_print_stats) {
- /* Print statistics at exit. */
- atexit(malloc_print_stats);
- }
-
- /* Register fork handlers. */
- pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
-
-#ifdef MALLOC_MAG
- /*
- * Calculate the actual number of rounds per magazine, taking into
- * account header overhead.
- */
- max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
- (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
-#endif
-
- /* Set variables according to the value of opt_[qc]space_max_2pow. */
- qspace_max = (1U << opt_qspace_max_2pow);
- cspace_min = CACHELINE_CEILING(qspace_max);
- if (cspace_min == qspace_max)
- cspace_min += CACHELINE;
- cspace_max = (1U << opt_cspace_max_2pow);
- sspace_min = SUBPAGE_CEILING(cspace_max);
- if (sspace_min == cspace_max)
- sspace_min += SUBPAGE;
- assert(sspace_min < pagesize);
- sspace_max = pagesize - SUBPAGE;
-
-#ifdef MALLOC_TINY
- assert(QUANTUM_2POW >= TINY_MIN_2POW);
-#endif
- assert(ntbins <= QUANTUM_2POW);
- nqbins = qspace_max >> QUANTUM_2POW;
- ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
- nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
- nbins = ntbins + nqbins + ncbins + nsbins;
-
- if (size2bin_init()) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
-
- /* Set variables according to the value of opt_chunk_2pow. */
- chunksize = (1LU << opt_chunk_2pow);
- chunksize_mask = chunksize - 1;
- chunk_npages = (chunksize >> pagesize_2pow);
- {
- size_t header_size;
-
- /*
- * Compute the header size such that it is large enough to
- * contain the page map.
- */
- header_size = sizeof(arena_chunk_t) +
- (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
- arena_chunk_header_npages = (header_size >> pagesize_2pow) +
- ((header_size & pagesize_mask) != 0);
- }
- arena_maxclass = chunksize - (arena_chunk_header_npages <<
- pagesize_2pow);
-
- UTRACE(0, 0, 0);
-
-#ifdef MALLOC_STATS
- memset(&stats_chunks, 0, sizeof(chunk_stats_t));
-#endif
-
- /* Various sanity checks that regard configuration. */
- assert(chunksize >= pagesize);
-
- /* Initialize chunks data. */
- if (malloc_mutex_init(&huge_mtx)) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
- extent_tree_ad_new(&huge);
-#ifdef MALLOC_DSS
- if (malloc_mutex_init(&dss_mtx)) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
- dss_base = sbrk(0);
- dss_prev = dss_base;
- dss_max = dss_base;
- extent_tree_szad_new(&dss_chunks_szad);
- extent_tree_ad_new(&dss_chunks_ad);
-#endif
-#ifdef MALLOC_STATS
- huge_nmalloc = 0;
- huge_ndalloc = 0;
- huge_allocated = 0;
-#endif
-
- /* Initialize base allocation data structures. */
-#ifdef MALLOC_STATS
- base_mapped = 0;
-#endif
-#ifdef MALLOC_DSS
- /*
- * Allocate a base chunk here, since it doesn't actually have to be
- * chunk-aligned. Doing this before allocating any other chunks allows
- * the use of space that would otherwise be wasted.
- */
- if (opt_dss)
- base_pages_alloc(0);
-#endif
- base_nodes = NULL;
- if (malloc_mutex_init(&base_mtx)) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
-
- if (ncpus > 1) {
- /*
- * For SMP systems, create twice as many arenas as there are
- * CPUs by default.
- */
- opt_narenas_lshift++;
- }
-
- /* Determine how many arenas to use. */
- narenas = ncpus;
- if (opt_narenas_lshift > 0) {
- if ((narenas << opt_narenas_lshift) > narenas)
- narenas <<= opt_narenas_lshift;
- /*
- * Make sure not to exceed the limits of what base_alloc() can
- * handle.
- */
- if (narenas * sizeof(arena_t *) > chunksize)
- narenas = chunksize / sizeof(arena_t *);
- } else if (opt_narenas_lshift < 0) {
- if ((narenas >> -opt_narenas_lshift) < narenas)
- narenas >>= -opt_narenas_lshift;
- /* Make sure there is at least one arena. */
- if (narenas == 0)
- narenas = 1;
- }
-#ifdef MALLOC_BALANCE
- assert(narenas != 0);
- for (narenas_2pow = 0;
- (narenas >> (narenas_2pow + 1)) != 0;
- narenas_2pow++);
-#endif
-
-#ifdef NO_TLS
- if (narenas > 1) {
- static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
- 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
- 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
- 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
- 223, 227, 229, 233, 239, 241, 251, 257, 263};
- unsigned nprimes, parenas;
-
- /*
- * Pick a prime number of hash arenas that is more than narenas
- * so that direct hashing of pthread_self() pointers tends to
- * spread allocations evenly among the arenas.
- */
- assert((narenas & 1) == 0); /* narenas must be even. */
- nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
- parenas = primes[nprimes - 1]; /* In case not enough primes. */
- for (i = 1; i < nprimes; i++) {
- if (primes[i] > narenas) {
- parenas = primes[i];
- break;
- }
- }
- narenas = parenas;
- }
-#endif
-
-#ifndef NO_TLS
-# ifndef MALLOC_BALANCE
- next_arena = 0;
-# endif
-#endif
-
- /* Allocate and initialize arenas. */
- arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
- if (arenas == NULL) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
- /*
- * Zero the array. In practice, this should always be pre-zeroed,
- * since it was just mmap()ed, but let's be sure.
- */
- memset(arenas, 0, sizeof(arena_t *) * narenas);
-
- /*
- * Initialize one arena here. The rest are lazily created in
- * choose_arena_hard().
- */
- arenas_extend(0);
- if (arenas[0] == NULL) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
-#ifndef NO_TLS
- /*
- * Assign the initial arena to the initial thread, in order to avoid
- * spurious creation of an extra arena if the application switches to
- * threaded mode.
- */
- arenas_map = arenas[0];
-#endif
- /*
- * Seed here for the initial thread, since choose_arena_hard() is only
- * called for other threads. The seed value doesn't really matter.
- */
-#ifdef MALLOC_BALANCE
- SPRN(balance, 42);
-#endif
-
- malloc_spin_init(&arenas_lock);
-
- malloc_initialized = true;
- malloc_mutex_unlock(&init_lock);
- return (false);
-}
-
-/*
- * End general internal functions.
- */
-/******************************************************************************/
-/*
- * Begin malloc(3)-compatible functions.
- */
-
-void *
-malloc(size_t size)
-{
- void *ret;
-
- if (malloc_init()) {
- ret = NULL;
- goto RETURN;
- }
-
- if (size == 0) {
- if (opt_sysv == false)
- size = 1;
- else {
- ret = NULL;
- goto RETURN;
- }
- }
-
- ret = imalloc(size);
-
-RETURN:
- if (ret == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in malloc(): out of memory\n", "",
- "");
- abort();
- }
- errno = ENOMEM;
- }
-
- UTRACE(0, size, ret);
- return (ret);
-}
-
-int
-posix_memalign(void **memptr, size_t alignment, size_t size)
-{
- int ret;
- void *result;
-
- if (malloc_init())
- result = NULL;
- else {
- /* Make sure that alignment is a large enough power of 2. */
- if (((alignment - 1) & alignment) != 0
- || alignment < sizeof(void *)) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in posix_memalign(): "
- "invalid alignment\n", "", "");
- abort();
- }
- result = NULL;
- ret = EINVAL;
- goto RETURN;
- }
-
- result = ipalloc(alignment, size);
- }
-
- if (result == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in posix_memalign(): out of memory\n",
- "", "");
- abort();
- }
- ret = ENOMEM;
- goto RETURN;
- }
-
- *memptr = result;
- ret = 0;
-
-RETURN:
- UTRACE(0, size, result);
- return (ret);
-}
-
-void *
-calloc(size_t num, size_t size)
-{
- void *ret;
- size_t num_size;
-
- if (malloc_init()) {
- num_size = 0;
- ret = NULL;
- goto RETURN;
- }
-
- num_size = num * size;
- if (num_size == 0) {
- if ((opt_sysv == false) && ((num == 0) || (size == 0)))
- num_size = 1;
- else {
- ret = NULL;
- goto RETURN;
- }
- /*
- * Try to avoid division here. We know that it isn't possible to
- * overflow during multiplication if neither operand uses any of the
- * most significant half of the bits in a size_t.
- */
- } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
- && (num_size / size != num)) {
- /* size_t overflow. */
- ret = NULL;
- goto RETURN;
- }
-
- ret = icalloc(num_size);
-
-RETURN:
- if (ret == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in calloc(): out of memory\n", "",
- "");
- abort();
- }
- errno = ENOMEM;
- }
-
- UTRACE(0, num_size, ret);
- return (ret);
-}
-
-void *
-realloc(void *ptr, size_t size)
-{
- void *ret;
-
- if (size == 0) {
- if (opt_sysv == false)
- size = 1;
- else {
- if (ptr != NULL)
- idalloc(ptr);
- ret = NULL;
- goto RETURN;
- }
- }
-
- if (ptr != NULL) {
- assert(malloc_initialized);
-
- ret = iralloc(ptr, size);
-
- if (ret == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in realloc(): out of "
- "memory\n", "", "");
- abort();
- }
- errno = ENOMEM;
- }
- } else {
- if (malloc_init())
- ret = NULL;
- else
- ret = imalloc(size);
-
- if (ret == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in realloc(): out of "
- "memory\n", "", "");
- abort();
- }
- errno = ENOMEM;
- }
- }
-
-RETURN:
- UTRACE(ptr, size, ret);
- return (ret);
-}
-
-void
-free(void *ptr)
-{
-
- UTRACE(ptr, 0, 0);
- if (ptr != NULL) {
- assert(malloc_initialized);
-
- idalloc(ptr);
- }
-}
-
-/*
- * End malloc(3)-compatible functions.
- */
-/******************************************************************************/
-/*
- * Begin non-standard functions.
- */
-
-size_t
-malloc_usable_size(const void *ptr)
-{
-
- assert(ptr != NULL);
-
- return (isalloc(ptr));
-}
-
-/*
- * End non-standard functions.
- */
-/******************************************************************************/
-/*
- * Begin library-private functions.
- */
-
-/******************************************************************************/
-/*
- * Begin thread cache.
- */
-
-/*
- * We provide an unpublished interface in order to receive notifications from
- * the pthreads library whenever a thread exits. This allows us to clean up
- * thread caches.
- */
-void
-_malloc_thread_cleanup(void)
-{
-
-#ifdef MALLOC_MAG
- if (mag_rack != NULL) {
- assert(mag_rack != (void *)-1);
- mag_rack_destroy(mag_rack);
-#ifdef MALLOC_DEBUG
- mag_rack = (void *)-1;
-#endif
- }
-#endif
-}
-
-/*
- * The following functions are used by threading libraries for protection of
- * malloc during fork(). These functions are only called if the program is
- * running in threaded mode, so there is no need to check whether the program
- * is threaded here.
- */
-
-void
-_malloc_prefork(void)
-{
- unsigned i;
-
- /* Acquire all mutexes in a safe order. */
-
- malloc_spin_lock(&arenas_lock);
- for (i = 0; i < narenas; i++) {
- if (arenas[i] != NULL)
- malloc_spin_lock(&arenas[i]->lock);
- }
- malloc_spin_unlock(&arenas_lock);
-
- malloc_mutex_lock(&base_mtx);
-
- malloc_mutex_lock(&huge_mtx);
-
-#ifdef MALLOC_DSS
- malloc_mutex_lock(&dss_mtx);
-#endif
-}
-
-void
-_malloc_postfork(void)
-{
- unsigned i;
-
- /* Release all mutexes, now that fork() has completed. */
-
-#ifdef MALLOC_DSS
- malloc_mutex_unlock(&dss_mtx);
-#endif
-
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_mutex_unlock(&base_mtx);
-
- malloc_spin_lock(&arenas_lock);
- for (i = 0; i < narenas; i++) {
- if (arenas[i] != NULL)
- malloc_spin_unlock(&arenas[i]->lock);
- }
- malloc_spin_unlock(&arenas_lock);
-}
-
-/*
- * End library-private functions.
- */
-/******************************************************************************/
diff --git a/lib/libjemalloc/malloc.3 b/lib/libjemalloc/malloc.3
deleted file mode 100644
index 67a52fb..0000000
--- a/lib/libjemalloc/malloc.3
+++ /dev/null
@@ -1,584 +0,0 @@
-.\" Copyright (c) 1980, 1991, 1993
-.\" The Regents of the University of California. All rights reserved.
-.\"
-.\" This code is derived from software contributed to Berkeley by
-.\" the American National Standards Committee X3, on Information
-.\" Processing Systems.
-.\"
-.\" Redistribution and use in source and binary forms, with or without
-.\" modification, are permitted provided that the following conditions
-.\" are met:
-.\" 1. Redistributions of source code must retain the above copyright
-.\" notice, this list of conditions and the following disclaimer.
-.\" 2. Redistributions in binary form must reproduce the above copyright
-.\" notice, this list of conditions and the following disclaimer in the
-.\" documentation and/or other materials provided with the distribution.
-.\" 3. Neither the name of the University nor the names of its contributors
-.\" may be used to endorse or promote products derived from this software
-.\" without specific prior written permission.
-.\"
-.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
-.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
-.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
-.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
-.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
-.\" SUCH DAMAGE.
-.\"
-.\" @(#)malloc.3 8.1 (Berkeley) 6/4/93
-.\" $FreeBSD: head/lib/libc/stdlib/malloc.3 182225 2008-08-27 02:00:53Z jasone $
-.\"
-.Dd August 26, 2008
-.Dt MALLOC 3
-.Os
-.Sh NAME
-.Nm malloc , calloc , realloc , free , reallocf , malloc_usable_size
-.Nd general purpose memory allocation functions
-.Sh LIBRARY
-.Lb libc
-.Sh SYNOPSIS
-.In stdlib.h
-.Ft void *
-.Fn malloc "size_t size"
-.Ft void *
-.Fn calloc "size_t number" "size_t size"
-.Ft void *
-.Fn realloc "void *ptr" "size_t size"
-.Ft void *
-.Fn reallocf "void *ptr" "size_t size"
-.Ft void
-.Fn free "void *ptr"
-.Ft const char *
-.Va _malloc_options ;
-.Ft void
-.Fo \*(lp*_malloc_message\*(rp
-.Fa "const char *p1" "const char *p2" "const char *p3" "const char *p4"
-.Fc
-.In malloc_np.h
-.Ft size_t
-.Fn malloc_usable_size "const void *ptr"
-.Sh DESCRIPTION
-The
-.Fn malloc
-function allocates
-.Fa size
-bytes of uninitialized memory.
-The allocated space is suitably aligned (after possible pointer coercion)
-for storage of any type of object.
-.Pp
-The
-.Fn calloc
-function allocates space for
-.Fa number
-objects,
-each
-.Fa size
-bytes in length.
-The result is identical to calling
-.Fn malloc
-with an argument of
-.Dq "number * size" ,
-with the exception that the allocated memory is explicitly initialized
-to zero bytes.
-.Pp
-The
-.Fn realloc
-function changes the size of the previously allocated memory referenced by
-.Fa ptr
-to
-.Fa size
-bytes.
-The contents of the memory are unchanged up to the lesser of the new and
-old sizes.
-If the new size is larger,
-the contents of the newly allocated portion of the memory are undefined.
-Upon success, the memory referenced by
-.Fa ptr
-is freed and a pointer to the newly allocated memory is returned.
-Note that
-.Fn realloc
-and
-.Fn reallocf
-may move the memory allocation, resulting in a different return value than
-.Fa ptr .
-If
-.Fa ptr
-is
-.Dv NULL ,
-the
-.Fn realloc
-function behaves identically to
-.Fn malloc
-for the specified size.
-.Pp
-The
-.Fn reallocf
-function is identical to the
-.Fn realloc
-function, except that it
-will free the passed pointer when the requested memory cannot be allocated.
-This is a
-.Fx
-specific API designed to ease the problems with traditional coding styles
-for realloc causing memory leaks in libraries.
-.Pp
-The
-.Fn free
-function causes the allocated memory referenced by
-.Fa ptr
-to be made available for future allocations.
-If
-.Fa ptr
-is
-.Dv NULL ,
-no action occurs.
-.Pp
-The
-.Fn malloc_usable_size
-function returns the usable size of the allocation pointed to by
-.Fa ptr .
-The return value may be larger than the size that was requested during
-allocation.
-The
-.Fn malloc_usable_size
-function is not a mechanism for in-place
-.Fn realloc ;
-rather it is provided solely as a tool for introspection purposes.
-Any discrepancy between the requested allocation size and the size reported by
-.Fn malloc_usable_size
-should not be depended on, since such behavior is entirely
-implementation-dependent.
-.Sh TUNING
-Once, when the first call is made to one of these memory allocation
-routines, various flags will be set or reset, which affects the
-workings of this allocator implementation.
-.Pp
-The
-.Dq name
-of the file referenced by the symbolic link named
-.Pa /etc/malloc.conf ,
-the value of the environment variable
-.Ev MALLOC_OPTIONS ,
-and the string pointed to by the global variable
-.Va _malloc_options
-will be interpreted, in that order, from left to right as flags.
-.Pp
-Each flag is a single letter, optionally prefixed by a non-negative base 10
-integer repetition count.
-For example,
-.Dq 3N
-is equivalent to
-.Dq NNN .
-Some flags control parameter magnitudes, where uppercase increases the
-magnitude, and lowercase decreases the magnitude.
-Other flags control boolean parameters, where uppercase indicates that a
-behavior is set, or on, and lowercase means that a behavior is not set, or off.
-.Bl -tag -width indent
-.It A
-All warnings (except for the warning about unknown
-flags being set) become fatal.
-The process will call
-.Xr abort 3
-in these cases.
-.It B
-Double/halve the per-arena lock contention threshold at which a thread is
-randomly re-assigned to an arena.
-This dynamic load balancing tends to push threads away from highly contended
-arenas, which avoids worst case contention scenarios in which threads
-disproportionately utilize arenas.
-However, due to the highly dynamic load that applications may place on the
-allocator, it is impossible for the allocator to know in advance how sensitive
-it should be to contention over arenas.
-Therefore, some applications may benefit from increasing or decreasing this
-threshold parameter.
-This option is not available for some configurations (non-PIC).
-.It C
-Double/halve the size of the maximum size class that is a multiple of the
-cacheline size (64).
-Above this size, subpage spacing (256 bytes) is used for size classes.
-The default value is 512 bytes.
-.It D
-Use
-.Xr sbrk 2
-to acquire memory in the data storage segment (DSS).
-This option is enabled by default.
-See the
-.Dq M
-option for related information and interactions.
-.It F
-Double/halve the per-arena maximum number of dirty unused pages that are
-allowed to accumulate before informing the kernel about at least half of those
-pages via
-.Xr madvise 2 .
-This provides the kernel with sufficient information to recycle dirty pages if
-physical memory becomes scarce and the pages remain unused.
-The default is 512 pages per arena;
-.Ev MALLOC_OPTIONS=10f
-will prevent any dirty unused pages from accumulating.
-.It G
-When there are multiple threads, use thread-specific caching for objects that
-are smaller than one page.
-This option is enabled by default.
-Thread-specific caching allows many allocations to be satisfied without
-performing any thread synchronization, at the cost of increased memory use.
-See the
-.Dq R
-option for related tuning information.
-This option is not available for some configurations (non-PIC).
-.It J
-Each byte of new memory allocated by
-.Fn malloc ,
-.Fn realloc
-or
-.Fn reallocf
-will be initialized to 0xa5.
-All memory returned by
-.Fn free ,
-.Fn realloc
-or
-.Fn reallocf
-will be initialized to 0x5a.
-This is intended for debugging and will impact performance negatively.
-.It K
-Double/halve the virtual memory chunk size.
-The default chunk size is 1 MB.
-.It M
-Use
-.Xr mmap 2
-to acquire anonymously mapped memory.
-This option is enabled by default.
-If both the
-.Dq D
-and
-.Dq M
-options are enabled, the allocator prefers the DSS over anonymous mappings,
-but allocation only fails if memory cannot be acquired via either method.
-If neither option is enabled, then the
-.Dq M
-option is implicitly enabled in order to assure that there is a method for
-acquiring memory.
-.It N
-Double/halve the number of arenas.
-The default number of arenas is two times the number of CPUs, or one if there
-is a single CPU.
-.It P
-Various statistics are printed at program exit via an
-.Xr atexit 3
-function.
-This has the potential to cause deadlock for a multi-threaded process that exits
-while one or more threads are executing in the memory allocation functions.
-Therefore, this option should only be used with care; it is primarily intended
-as a performance tuning aid during application development.
-.It Q
-Double/halve the size of the maximum size class that is a multiple of the
-quantum (8 or 16 bytes, depending on architecture).
-Above this size, cacheline spacing is used for size classes.
-The default value is 128 bytes.
-.It R
-Double/halve magazine size, which approximately doubles/halves the number of
-rounds in each magazine.
-Magazines are used by the thread-specific caching machinery to acquire and
-release objects in bulk.
-Increasing the magazine size decreases locking overhead, at the expense of
-increased memory usage.
-This option is not available for some configurations (non-PIC).
-.It U
-Generate
-.Dq utrace
-entries for
-.Xr ktrace 1 ,
-for all operations.
-Consult the source for details on this option.
-.It V
-Attempting to allocate zero bytes will return a
-.Dv NULL
-pointer instead of
-a valid pointer.
-(The default behavior is to make a minimal allocation and return a
-pointer to it.)
-This option is provided for System V compatibility.
-This option is incompatible with the
-.Dq X
-option.
-.It X
-Rather than return failure for any allocation function,
-display a diagnostic message on
-.Dv stderr
-and cause the program to drop
-core (using
-.Xr abort 3 ) .
-This option should be set at compile time by including the following in
-the source code:
-.Bd -literal -offset indent
-_malloc_options = "X";
-.Ed
-.It Z
-Each byte of new memory allocated by
-.Fn malloc ,
-.Fn realloc
-or
-.Fn reallocf
-will be initialized to 0.
-Note that this initialization only happens once for each byte, so
-.Fn realloc
-and
-.Fn reallocf
-calls do not zero memory that was previously allocated.
-This is intended for debugging and will impact performance negatively.
-.El
-.Pp
-The
-.Dq J
-and
-.Dq Z
-options are intended for testing and debugging.
-An application which changes its behavior when these options are used
-is flawed.
-.Sh IMPLEMENTATION NOTES
-Traditionally, allocators have used
-.Xr sbrk 2
-to obtain memory, which is suboptimal for several reasons, including race
-conditions, increased fragmentation, and artificial limitations on maximum
-usable memory.
-This allocator uses both
-.Xr sbrk 2
-and
-.Xr mmap 2
-by default, but it can be configured at run time to use only one or the other.
-If resource limits are not a primary concern, the preferred configuration is
-.Ev MALLOC_OPTIONS=dM
-or
-.Ev MALLOC_OPTIONS=DM .
-When so configured, the
-.Ar datasize
-resource limit has little practical effect for typical applications; use
-.Ev MALLOC_OPTIONS=Dm
-if that is a concern.
-Regardless of allocator configuration, the
-.Ar vmemoryuse
-resource limit can be used to bound the total virtual memory used by a
-process, as described in
-.Xr limits 1 .
-.Pp
-This allocator uses multiple arenas in order to reduce lock contention for
-threaded programs on multi-processor systems.
-This works well with regard to threading scalability, but incurs some costs.
-There is a small fixed per-arena overhead, and additionally, arenas manage
-memory completely independently of each other, which means a small fixed
-increase in overall memory fragmentation.
-These overheads are not generally an issue, given the number of arenas normally
-used.
-Note that using substantially more arenas than the default is not likely to
-improve performance, mainly due to reduced cache performance.
-However, it may make sense to reduce the number of arenas if an application
-does not make much use of the allocation functions.
-.Pp
-In addition to multiple arenas, this allocator supports thread-specific
-caching for small objects (smaller than one page), in order to make it
-possible to completely avoid synchronization for most small allocation requests.
-Such caching allows very fast allocation in the common case, but it increases
-memory usage and fragmentation, since a bounded number of objects can remain
-allocated in each thread cache.
-.Pp
-Memory is conceptually broken into equal-sized chunks, where the chunk size is
-a power of two that is greater than the page size.
-Chunks are always aligned to multiples of the chunk size.
-This alignment makes it possible to find metadata for user objects very
-quickly.
-.Pp
-User objects are broken into three categories according to size: small, large,
-and huge.
-Small objects are smaller than one page.
-Large objects are smaller than the chunk size.
-Huge objects are a multiple of the chunk size.
-Small and large objects are managed by arenas; huge objects are managed
-separately in a single data structure that is shared by all threads.
-Huge objects are used by applications infrequently enough that this single
-data structure is not a scalability issue.
-.Pp
-Each chunk that is managed by an arena tracks its contents as runs of
-contiguous pages (unused, backing a set of small objects, or backing one large
-object).
-The combination of chunk alignment and chunk page maps makes it possible to
-determine all metadata regarding small and large allocations in constant time.
-.Pp
-Small objects are managed in groups by page runs.
-Each run maintains a bitmap that tracks which regions are in use.
-Allocation requests that are no more than half the quantum (8 or 16, depending
-on architecture) are rounded up to the nearest power of two.
-Allocation requests that are more than half the quantum, but no more than the
-minimum cacheline-multiple size class (see the
-.Dq Q
-option) are rounded up to the nearest multiple of the quantum.
-Allocation requests that are more than the minumum cacheline-multiple size
-class, but no more than the minimum subpage-multiple size class (see the
-.Dq C
-option) are rounded up to the nearest multiple of the cacheline size (64).
-Allocation requests that are more than the minimum subpage-multiple size class
-are rounded up to the nearest multiple of the subpage size (256).
-Allocation requests that are more than one page, but small enough to fit in
-an arena-managed chunk (see the
-.Dq K
-option), are rounded up to the nearest run size.
-Allocation requests that are too large to fit in an arena-managed chunk are
-rounded up to the nearest multiple of the chunk size.
-.Pp
-Allocations are packed tightly together, which can be an issue for
-multi-threaded applications.
-If you need to assure that allocations do not suffer from cacheline sharing,
-round your allocation requests up to the nearest multiple of the cacheline
-size.
-.Sh DEBUGGING MALLOC PROBLEMS
-The first thing to do is to set the
-.Dq A
-option.
-This option forces a coredump (if possible) at the first sign of trouble,
-rather than the normal policy of trying to continue if at all possible.
-.Pp
-It is probably also a good idea to recompile the program with suitable
-options and symbols for debugger support.
-.Pp
-If the program starts to give unusual results, coredump or generally behave
-differently without emitting any of the messages mentioned in the next
-section, it is likely because it depends on the storage being filled with
-zero bytes.
-Try running it with the
-.Dq Z
-option set;
-if that improves the situation, this diagnosis has been confirmed.
-If the program still misbehaves,
-the likely problem is accessing memory outside the allocated area.
-.Pp
-Alternatively, if the symptoms are not easy to reproduce, setting the
-.Dq J
-option may help provoke the problem.
-.Pp
-In truly difficult cases, the
-.Dq U
-option, if supported by the kernel, can provide a detailed trace of
-all calls made to these functions.
-.Pp
-Unfortunately this implementation does not provide much detail about
-the problems it detects; the performance impact for storing such information
-would be prohibitive.
-There are a number of allocator implementations available on the Internet
-which focus on detecting and pinpointing problems by trading performance for
-extra sanity checks and detailed diagnostics.
-.Sh DIAGNOSTIC MESSAGES
-If any of the memory allocation/deallocation functions detect an error or
-warning condition, a message will be printed to file descriptor
-.Dv STDERR_FILENO .
-Errors will result in the process dumping core.
-If the
-.Dq A
-option is set, all warnings are treated as errors.
-.Pp
-The
-.Va _malloc_message
-variable allows the programmer to override the function which emits
-the text strings forming the errors and warnings if for some reason
-the
-.Dv stderr
-file descriptor is not suitable for this.
-Please note that doing anything which tries to allocate memory in
-this function is likely to result in a crash or deadlock.
-.Pp
-All messages are prefixed by
-.Dq Ao Ar progname Ac Ns Li : (malloc) .
-.Sh RETURN VALUES
-The
-.Fn malloc
-and
-.Fn calloc
-functions return a pointer to the allocated memory if successful; otherwise
-a
-.Dv NULL
-pointer is returned and
-.Va errno
-is set to
-.Er ENOMEM .
-.Pp
-The
-.Fn realloc
-and
-.Fn reallocf
-functions return a pointer, possibly identical to
-.Fa ptr ,
-to the allocated memory
-if successful; otherwise a
-.Dv NULL
-pointer is returned, and
-.Va errno
-is set to
-.Er ENOMEM
-if the error was the result of an allocation failure.
-The
-.Fn realloc
-function always leaves the original buffer intact
-when an error occurs, whereas
-.Fn reallocf
-deallocates it in this case.
-.Pp
-The
-.Fn free
-function returns no value.
-.Pp
-The
-.Fn malloc_usable_size
-function returns the usable size of the allocation pointed to by
-.Fa ptr .
-.Sh ENVIRONMENT
-The following environment variables affect the execution of the allocation
-functions:
-.Bl -tag -width ".Ev MALLOC_OPTIONS"
-.It Ev MALLOC_OPTIONS
-If the environment variable
-.Ev MALLOC_OPTIONS
-is set, the characters it contains will be interpreted as flags to the
-allocation functions.
-.El
-.Sh EXAMPLES
-To dump core whenever a problem occurs:
-.Pp
-.Bd -literal -offset indent
-ln -s 'A' /etc/malloc.conf
-.Ed
-.Pp
-To specify in the source that a program does no return value checking
-on calls to these functions:
-.Bd -literal -offset indent
-_malloc_options = "X";
-.Ed
-.Sh SEE ALSO
-.Xr limits 1 ,
-.Xr madvise 2 ,
-.Xr mmap 2 ,
-.Xr sbrk 2 ,
-.Xr alloca 3 ,
-.Xr atexit 3 ,
-.Xr getpagesize 3 ,
-.Xr memory 3 ,
-.Xr posix_memalign 3
-.Sh STANDARDS
-The
-.Fn malloc ,
-.Fn calloc ,
-.Fn realloc
-and
-.Fn free
-functions conform to
-.St -isoC .
-.Sh HISTORY
-The
-.Fn reallocf
-function first appeared in
-.Fx 3.0 .
-.Pp
-The
-.Fn malloc_usable_size
-function first appeared in
-.Fx 7.0 .
diff --git a/lib/libjemalloc/malloc.c b/lib/libjemalloc/malloc.c
deleted file mode 100644
index 56d8a98..0000000
--- a/lib/libjemalloc/malloc.c
+++ /dev/null
@@ -1,5594 +0,0 @@
-/*-
- * Copyright (C) 2006-2008 Jason Evans <jasone at FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice(s), this list of conditions and the following disclaimer as
- * the first lines of this file unmodified other than the possible
- * addition of one or more copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice(s), this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- *******************************************************************************
- *
- * This allocator implementation is designed to provide scalable performance
- * for multi-threaded programs on multi-processor systems. The following
- * features are included for this purpose:
- *
- * + Multiple arenas are used if there are multiple CPUs, which reduces lock
- * contention and cache sloshing.
- *
- * + Thread-specific caching is used if there are multiple threads, which
- * reduces the amount of locking.
- *
- * + Cache line sharing between arenas is avoided for internal data
- * structures.
- *
- * + Memory is managed in chunks and runs (chunks can be split into runs),
- * rather than as individual pages. This provides a constant-time
- * mechanism for associating allocations with particular arenas.
- *
- * Allocation requests are rounded up to the nearest size class, and no record
- * of the original request size is maintained. Allocations are broken into
- * categories according to size class. Assuming runtime defaults, 4 kB pages
- * and a 16 byte quantum on a 32-bit system, the size classes in each category
- * are as follows:
- *
- * |=======================================|
- * | Category | Subcategory | Size |
- * |=======================================|
- * | Small | Tiny | 2 |
- * | | | 4 |
- * | | | 8 |
- * | |------------------+---------|
- * | | Quantum-spaced | 16 |
- * | | | 32 |
- * | | | 48 |
- * | | | ... |
- * | | | 96 |
- * | | | 112 |
- * | | | 128 |
- * | |------------------+---------|
- * | | Cacheline-spaced | 192 |
- * | | | 256 |
- * | | | 320 |
- * | | | 384 |
- * | | | 448 |
- * | | | 512 |
- * | |------------------+---------|
- * | | Sub-page | 760 |
- * | | | 1024 |
- * | | | 1280 |
- * | | | ... |
- * | | | 3328 |
- * | | | 3584 |
- * | | | 3840 |
- * |=======================================|
- * | Large | 4 kB |
- * | | 8 kB |
- * | | 12 kB |
- * | | ... |
- * | | 1012 kB |
- * | | 1016 kB |
- * | | 1020 kB |
- * |=======================================|
- * | Huge | 1 MB |
- * | | 2 MB |
- * | | 3 MB |
- * | | ... |
- * |=======================================|
- *
- * A different mechanism is used for each category:
- *
- * Small : Each size class is segregated into its own set of runs. Each run
- * maintains a bitmap of which regions are free/allocated.
- *
- * Large : Each allocation is backed by a dedicated run. Metadata are stored
- * in the associated arena chunk header maps.
- *
- * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
- * Metadata are stored in a separate red-black tree.
- *
- *******************************************************************************
- */
-
-/*
- * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
- * defaults the A and J runtime options to off. These settings are appropriate
- * for production systems.
- */
-/* #define MALLOC_PRODUCTION */
-
-#ifndef MALLOC_PRODUCTION
- /*
- * MALLOC_DEBUG enables assertions and other sanity checks, and disables
- * inline functions.
- */
-# define MALLOC_DEBUG
-
- /* MALLOC_STATS enables statistics calculation. */
-# define MALLOC_STATS
-#endif
-
-/*
- * MALLOC_TINY enables support for tiny objects, which are smaller than one
- * quantum.
- */
-#define MALLOC_TINY
-
-/*
- * MALLOC_MAG enables a magazine-based thread-specific caching layer for small
- * objects. This makes it possible to allocate/deallocate objects without any
- * locking when the cache is in the steady state.
- */
-#define MALLOC_MAG
-
-/*
- * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
- * re-balances arena load if exponentially averaged contention exceeds a
- * certain threshold.
- */
-#define MALLOC_BALANCE
-
-/*
- * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
- * segment (DSS). In an ideal world, this functionality would be completely
- * unnecessary, but we are burdened by history and the lack of resource limits
- * for anonymous mapped memory.
- */
-#define MALLOC_DSS
-
-#include <sys/cdefs.h>
-__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 182225 2008-08-27 02:00:53Z jasone $");
-
-#include "libc_private.h"
-#ifdef MALLOC_DEBUG
-# define _LOCK_DEBUG
-#endif
-#include "spinlock.h"
-#include "namespace.h"
-#include <sys/mman.h>
-#include <sys/param.h>
-#include <sys/stddef.h>
-#include <sys/time.h>
-#include <sys/types.h>
-#include <sys/sysctl.h>
-#include <sys/uio.h>
-#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
-
-#include <machine/cpufunc.h>
-#include <machine/vmparam.h>
-
-#include <errno.h>
-#include <limits.h>
-#include <pthread.h>
-#include <sched.h>
-#include <stdarg.h>
-#include <stdbool.h>
-#include <stdio.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-#include <unistd.h>
-
-#include "un-namespace.h"
-
-#ifdef MALLOC_DEBUG
-# ifdef NDEBUG
-# undef NDEBUG
-# endif
-#else
-# ifndef NDEBUG
-# define NDEBUG
-# endif
-#endif
-#include <assert.h>
-
-#include "rb.h"
-
-#ifdef MALLOC_DEBUG
- /* Disable inlining to make debugging easier. */
-# define inline
-#endif
-
-/* Size of stack-allocated buffer passed to strerror_r(). */
-#define STRERROR_BUF 64
-
-/*
- * The const_size2bin table is sized according to PAGESIZE_2POW, but for
- * correctness reasons, we never assume that
- * (pagesize == (1U << * PAGESIZE_2POW)).
- *
- * Minimum alignment of allocations is 2^QUANTUM_2POW bytes.
- */
-#ifdef __i386__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 2
-# define CPU_SPINWAIT __asm__ volatile("pause")
-#endif
-#ifdef __ia64__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-#endif
-#ifdef __alpha__
-# define PAGESIZE_2POW 13
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-# define NO_TLS
-#endif
-#ifdef __sparc64__
-# define PAGESIZE_2POW 13
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-# define NO_TLS
-#endif
-#ifdef __amd64__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 3
-# define CPU_SPINWAIT __asm__ volatile("pause")
-#endif
-#ifdef __arm__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 3
-# define SIZEOF_PTR_2POW 2
-# define NO_TLS
-#endif
-#ifdef __mips__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 3
-# define SIZEOF_PTR_2POW 2
-# define NO_TLS
-#endif
-#ifdef __powerpc__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 4
-# define SIZEOF_PTR_2POW 2
-#endif
-#ifdef __sh__
-# define PAGESIZE_2POW 12
-# define QUANTUM_2POW 3
-# define SIZEOF_PTR_2POW 2
-# define NO_TLS
-#endif
-
-#define QUANTUM ((size_t)(1U << QUANTUM_2POW))
-#define QUANTUM_MASK (QUANTUM - 1)
-
-#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
-
-/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
-#ifndef SIZEOF_INT_2POW
-# define SIZEOF_INT_2POW 2
-#endif
-
-/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
-#if (!defined(PIC) && !defined(NO_TLS))
-# define NO_TLS
-#endif
-
-#ifdef NO_TLS
- /* MALLOC_MAG requires TLS. */
-# ifdef MALLOC_MAG
-# undef MALLOC_MAG
-# endif
- /* MALLOC_BALANCE requires TLS. */
-# ifdef MALLOC_BALANCE
-# undef MALLOC_BALANCE
-# endif
-#endif
-
-/*
- * Size and alignment of memory chunks that are allocated by the OS's virtual
- * memory system.
- */
-#define CHUNK_2POW_DEFAULT 20
-
-/* Maximum number of dirty pages per arena. */
-#define DIRTY_MAX_DEFAULT (1U << 9)
-
-/*
- * Maximum size of L1 cache line. This is used to avoid cache line aliasing.
- * In addition, this controls the spacing of cacheline-spaced size classes.
- */
-#define CACHELINE_2POW 6
-#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
-#define CACHELINE_MASK (CACHELINE - 1)
-
-/*
- * Subpages are an artificially designated partitioning of pages. Their only
- * purpose is to support subpage-spaced size classes.
- *
- * There must be at least 4 subpages per page, due to the way size classes are
- * handled.
- */
-#define SUBPAGE_2POW 8
-#define SUBPAGE ((size_t)(1U << SUBPAGE_2POW))
-#define SUBPAGE_MASK (SUBPAGE - 1)
-
-#ifdef MALLOC_TINY
- /* Smallest size class to support. */
-# define TINY_MIN_2POW 1
-#endif
-
-/*
- * Maximum size class that is a multiple of the quantum, but not (necessarily)
- * a power of 2. Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define QSPACE_MAX_2POW_DEFAULT 7
-
-/*
- * Maximum size class that is a multiple of the cacheline, but not (necessarily)
- * a power of 2. Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define CSPACE_MAX_2POW_DEFAULT 9
-
-/*
- * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
- * as small as possible such that this setting is still honored, without
- * violating other constraints. The goal is to make runs as small as possible
- * without exceeding a per run external fragmentation threshold.
- *
- * We use binary fixed point math for overhead computations, where the binary
- * point is implicitly RUN_BFP bits to the left.
- *
- * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
- * honored for some/all object sizes, since there is one bit of header overhead
- * per object (plus a constant). This constraint is relaxed (ignored) for runs
- * that are so small that the per-region overhead is greater than:
- *
- * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
- */
-#define RUN_BFP 12
-/* \/ Implicit binary fixed point. */
-#define RUN_MAX_OVRHD 0x0000003dU
-#define RUN_MAX_OVRHD_RELAX 0x00001800U
-
-/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
-#define RUN_MAX_SMALL (12 * pagesize)
-
-/*
- * Hyper-threaded CPUs may need a special instruction inside spin loops in
- * order to yield to another virtual CPU. If no such instruction is defined
- * above, make CPU_SPINWAIT a no-op.
- */
-#ifndef CPU_SPINWAIT
-# define CPU_SPINWAIT
-#endif
-
-/*
- * Adaptive spinning must eventually switch to blocking, in order to avoid the
- * potential for priority inversion deadlock. Backing off past a certain point
- * can actually waste time.
- */
-#define SPIN_LIMIT_2POW 11
-
-/*
- * Conversion from spinning to blocking is expensive; we use (1U <<
- * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
- * worst-case spinning.
- */
-#define BLOCK_COST_2POW 4
-
-#ifdef MALLOC_MAG
- /*
- * Default magazine size, in bytes. max_rounds is calculated to make
- * optimal use of the space, leaving just enough room for the magazine
- * header.
- */
-# define MAG_SIZE_2POW_DEFAULT 9
-#endif
-
-#ifdef MALLOC_BALANCE
- /*
- * We use an exponential moving average to track recent lock contention,
- * where the size of the history window is N, and alpha=2/(N+1).
- *
- * Due to integer math rounding, very small values here can cause
- * substantial degradation in accuracy, thus making the moving average decay
- * faster than it would with precise calculation.
- */
-# define BALANCE_ALPHA_INV_2POW 9
-
- /*
- * Threshold value for the exponential moving contention average at which to
- * re-assign a thread.
- */
-# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
-#endif
-
-/******************************************************************************/
-
-/*
- * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
- * places, because they require malloc()ed memory, which causes bootstrapping
- * issues in some cases.
- */
-typedef struct {
- spinlock_t lock;
-} malloc_mutex_t;
-
-/* Set to true once the allocator has been initialized. */
-static bool malloc_initialized = false;
-
-/* Used to avoid initialization races. */
-static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
-
-/******************************************************************************/
-/*
- * Statistics data structures.
- */
-
-#ifdef MALLOC_STATS
-
-typedef struct malloc_bin_stats_s malloc_bin_stats_t;
-struct malloc_bin_stats_s {
- /*
- * Number of allocation requests that corresponded to the size of this
- * bin.
- */
- uint64_t nrequests;
-
-#ifdef MALLOC_MAG
- /* Number of magazine reloads from this bin. */
- uint64_t nmags;
-#endif
-
- /* Total number of runs created for this bin's size class. */
- uint64_t nruns;
-
- /*
- * Total number of runs reused by extracting them from the runs tree for
- * this bin's size class.
- */
- uint64_t reruns;
-
- /* High-water mark for this bin. */
- unsigned long highruns;
-
- /* Current number of runs in this bin. */
- unsigned long curruns;
-};
-
-typedef struct arena_stats_s arena_stats_t;
-struct arena_stats_s {
- /* Number of bytes currently mapped. */
- size_t mapped;
-
- /*
- * Total number of purge sweeps, total number of madvise calls made,
- * and total pages purged in order to keep dirty unused memory under
- * control.
- */
- uint64_t npurge;
- uint64_t nmadvise;
- uint64_t purged;
-
- /* Per-size-category statistics. */
- size_t allocated_small;
- uint64_t nmalloc_small;
- uint64_t ndalloc_small;
-
- size_t allocated_large;
- uint64_t nmalloc_large;
- uint64_t ndalloc_large;
-
-#ifdef MALLOC_BALANCE
- /* Number of times this arena reassigned a thread due to contention. */
- uint64_t nbalance;
-#endif
-};
-
-typedef struct chunk_stats_s chunk_stats_t;
-struct chunk_stats_s {
- /* Number of chunks that were allocated. */
- uint64_t nchunks;
-
- /* High-water mark for number of chunks allocated. */
- unsigned long highchunks;
-
- /*
- * Current number of chunks allocated. This value isn't maintained for
- * any other purpose, so keep track of it in order to be able to set
- * highchunks.
- */
- unsigned long curchunks;
-};
-
-#endif /* #ifdef MALLOC_STATS */
-
-/******************************************************************************/
-/*
- * Extent data structures.
- */
-
-/* Tree of extents. */
-typedef struct extent_node_s extent_node_t;
-struct extent_node_s {
-#ifdef MALLOC_DSS
- /* Linkage for the size/address-ordered tree. */
- rb_node(extent_node_t) link_szad;
-#endif
-
- /* Linkage for the address-ordered tree. */
- rb_node(extent_node_t) link_ad;
-
- /* Pointer to the extent that this tree node is responsible for. */
- void *addr;
-
- /* Total region size. */
- size_t size;
-};
-typedef rb_tree(extent_node_t) extent_tree_t;
-
-/******************************************************************************/
-/*
- * Arena data structures.
- */
-
-typedef struct arena_s arena_t;
-typedef struct arena_bin_s arena_bin_t;
-
-/* Each element of the chunk map corresponds to one page within the chunk. */
-typedef struct arena_chunk_map_s arena_chunk_map_t;
-struct arena_chunk_map_s {
- /*
- * Linkage for run trees. There are two disjoint uses:
- *
- * 1) arena_t's runs_avail tree.
- * 2) arena_run_t conceptually uses this linkage for in-use non-full
- * runs, rather than directly embedding linkage.
- */
- rb_node(arena_chunk_map_t) link;
-
- /*
- * Run address (or size) and various flags are stored together. The bit
- * layout looks like (assuming 32-bit system):
- *
- * ???????? ???????? ????---- ---kdzla
- *
- * ? : Unallocated: Run address for first/last pages, unset for internal
- * pages.
- * Small: Run address.
- * Large: Run size for first page, unset for trailing pages.
- * - : Unused.
- * k : key?
- * d : dirty?
- * z : zeroed?
- * l : large?
- * a : allocated?
- *
- * Following are example bit patterns for the three types of runs.
- *
- * r : run address
- * s : run size
- * x : don't care
- * - : 0
- * [dzla] : bit set
- *
- * Unallocated:
- * ssssssss ssssssss ssss---- --------
- * xxxxxxxx xxxxxxxx xxxx---- ----d---
- * ssssssss ssssssss ssss---- -----z--
- *
- * Small:
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- *
- * Large:
- * ssssssss ssssssss ssss---- ------la
- * -------- -------- -------- ------la
- * -------- -------- -------- ------la
- */
- size_t bits;
-#define CHUNK_MAP_KEY ((size_t)0x10U)
-#define CHUNK_MAP_DIRTY ((size_t)0x08U)
-#define CHUNK_MAP_ZEROED ((size_t)0x04U)
-#define CHUNK_MAP_LARGE ((size_t)0x02U)
-#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
-};
-typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
-typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
-
-/* Arena chunk header. */
-typedef struct arena_chunk_s arena_chunk_t;
-struct arena_chunk_s {
- /* Arena that owns the chunk. */
- arena_t *arena;
-
- /* Linkage for the arena's chunks_dirty tree. */
- rb_node(arena_chunk_t) link_dirty;
-
- /* Number of dirty pages. */
- size_t ndirty;
-
- /* Map of pages within chunk that keeps track of free/large/small. */
- arena_chunk_map_t map[1]; /* Dynamically sized. */
-};
-typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
-
-typedef struct arena_run_s arena_run_t;
-struct arena_run_s {
-#ifdef MALLOC_DEBUG
- uint32_t magic;
-# define ARENA_RUN_MAGIC 0x384adf93
-#endif
-
- /* Bin this run is associated with. */
- arena_bin_t *bin;
-
- /* Index of first element that might have a free region. */
- unsigned regs_minelm;
-
- /* Number of free regions in run. */
- unsigned nfree;
-
- /* Bitmask of in-use regions (0: in use, 1: free). */
- unsigned regs_mask[1]; /* Dynamically sized. */
-};
-
-struct arena_bin_s {
- /*
- * Current run being used to service allocations of this bin's size
- * class.
- */
- arena_run_t *runcur;
-
- /*
- * Tree of non-full runs. This tree is used when looking for an
- * existing run when runcur is no longer usable. We choose the
- * non-full run that is lowest in memory; this policy tends to keep
- * objects packed well, and it can also help reduce the number of
- * almost-empty chunks.
- */
- arena_run_tree_t runs;
-
- /* Size of regions in a run for this bin's size class. */
- size_t reg_size;
-
- /* Total size of a run for this bin's size class. */
- size_t run_size;
-
- /* Total number of regions in a run for this bin's size class. */
- uint32_t nregs;
-
- /* Number of elements in a run's regs_mask for this bin's size class. */
- uint32_t regs_mask_nelms;
-
- /* Offset of first region in a run for this bin's size class. */
- uint32_t reg0_offset;
-
-#ifdef MALLOC_STATS
- /* Bin statistics. */
- malloc_bin_stats_t stats;
-#endif
-};
-
-struct arena_s {
-#ifdef MALLOC_DEBUG
- uint32_t magic;
-# define ARENA_MAGIC 0x947d3d24
-#endif
-
- /* All operations on this arena require that lock be locked. */
- pthread_mutex_t lock;
-
-#ifdef MALLOC_STATS
- arena_stats_t stats;
-#endif
-
- /* Tree of dirty-page-containing chunks this arena manages. */
- arena_chunk_tree_t chunks_dirty;
-
- /*
- * In order to avoid rapid chunk allocation/deallocation when an arena
- * oscillates right on the cusp of needing a new chunk, cache the most
- * recently freed chunk. The spare is left in the arena's chunk trees
- * until it is deleted.
- *
- * There is one spare chunk per arena, rather than one spare total, in
- * order to avoid interactions between multiple threads that could make
- * a single spare inadequate.
- */
- arena_chunk_t *spare;
-
- /*
- * Current count of pages within unused runs that are potentially
- * dirty, and for which madvise(... MADV_FREE) has not been called. By
- * tracking this, we can institute a limit on how much dirty unused
- * memory is mapped for each arena.
- */
- size_t ndirty;
-
- /*
- * Size/address-ordered tree of this arena's available runs. This tree
- * is used for first-best-fit run allocation.
- */
- arena_avail_tree_t runs_avail;
-
-#ifdef MALLOC_BALANCE
- /*
- * The arena load balancing machinery needs to keep track of how much
- * lock contention there is. This value is exponentially averaged.
- */
- uint32_t contention;
-#endif
-
- /*
- * bins is used to store rings of free regions of the following sizes,
- * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
- *
- * bins[i] | size |
- * --------+------+
- * 0 | 2 |
- * 1 | 4 |
- * 2 | 8 |
- * --------+------+
- * 3 | 16 |
- * 4 | 32 |
- * 5 | 48 |
- * 6 | 64 |
- * : :
- * : :
- * 33 | 496 |
- * 34 | 512 |
- * --------+------+
- * 35 | 1024 |
- * 36 | 2048 |
- * --------+------+
- */
- arena_bin_t bins[1]; /* Dynamically sized. */
-};
-
-/******************************************************************************/
-/*
- * Magazine data structures.
- */
-
-#ifdef MALLOC_MAG
-typedef struct mag_s mag_t;
-struct mag_s {
- size_t binind; /* Index of associated bin. */
- size_t nrounds;
- void *rounds[1]; /* Dynamically sized. */
-};
-
-/*
- * Magazines are lazily allocated, but once created, they remain until the
- * associated mag_rack is destroyed.
- */
-typedef struct bin_mags_s bin_mags_t;
-struct bin_mags_s {
- mag_t *curmag;
- mag_t *sparemag;
-};
-
-typedef struct mag_rack_s mag_rack_t;
-struct mag_rack_s {
- bin_mags_t bin_mags[1]; /* Dynamically sized. */
-};
-#endif
-
-/******************************************************************************/
-/*
- * Data.
- */
-
-/* Number of CPUs. */
-static unsigned ncpus;
-
-/* VM page size. */
-static size_t pagesize;
-static size_t pagesize_mask;
-static size_t pagesize_2pow;
-
-/* Various bin-related settings. */
-#ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
-# define ntbins ((unsigned)(QUANTUM_2POW - TINY_MIN_2POW))
-#else
-# define ntbins 0
-#endif
-static unsigned nqbins; /* Number of quantum-spaced bins. */
-static unsigned ncbins; /* Number of cacheline-spaced bins. */
-static unsigned nsbins; /* Number of subpage-spaced bins. */
-static unsigned nbins;
-#ifdef MALLOC_TINY
-# define tspace_max ((size_t)(QUANTUM >> 1))
-#endif
-#define qspace_min QUANTUM
-static size_t qspace_max;
-static size_t cspace_min;
-static size_t cspace_max;
-static size_t sspace_min;
-static size_t sspace_max;
-#define bin_maxclass sspace_max
-
-static uint8_t const *size2bin;
-/*
- * const_size2bin is a static constant lookup table that in the common case can
- * be used as-is for size2bin. For dynamically linked programs, this avoids
- * a page of memory overhead per process.
- */
-#define S2B_1(i) i,
-#define S2B_2(i) S2B_1(i) S2B_1(i)
-#define S2B_4(i) S2B_2(i) S2B_2(i)
-#define S2B_8(i) S2B_4(i) S2B_4(i)
-#define S2B_16(i) S2B_8(i) S2B_8(i)
-#define S2B_32(i) S2B_16(i) S2B_16(i)
-#define S2B_64(i) S2B_32(i) S2B_32(i)
-#define S2B_128(i) S2B_64(i) S2B_64(i)
-#define S2B_256(i) S2B_128(i) S2B_128(i)
-static const uint8_t const_size2bin[(1U << PAGESIZE_2POW) - 255] = {
- S2B_1(0xffU) /* 0 */
-#if (QUANTUM_2POW == 4)
-/* 64-bit system ************************/
-# ifdef MALLOC_TINY
- S2B_2(0) /* 2 */
- S2B_2(1) /* 4 */
- S2B_4(2) /* 8 */
- S2B_8(3) /* 16 */
-# define S2B_QMIN 3
-# else
- S2B_16(0) /* 16 */
-# define S2B_QMIN 0
-# endif
- S2B_16(S2B_QMIN + 1) /* 32 */
- S2B_16(S2B_QMIN + 2) /* 48 */
- S2B_16(S2B_QMIN + 3) /* 64 */
- S2B_16(S2B_QMIN + 4) /* 80 */
- S2B_16(S2B_QMIN + 5) /* 96 */
- S2B_16(S2B_QMIN + 6) /* 112 */
- S2B_16(S2B_QMIN + 7) /* 128 */
-# define S2B_CMIN (S2B_QMIN + 8)
-#else
-/* 32-bit system ************************/
-# ifdef MALLOC_TINY
- S2B_2(0) /* 2 */
- S2B_2(1) /* 4 */
- S2B_4(2) /* 8 */
-# define S2B_QMIN 2
-# else
- S2B_8(0) /* 8 */
-# define S2B_QMIN 0
-# endif
- S2B_8(S2B_QMIN + 1) /* 16 */
- S2B_8(S2B_QMIN + 2) /* 24 */
- S2B_8(S2B_QMIN + 3) /* 32 */
- S2B_8(S2B_QMIN + 4) /* 40 */
- S2B_8(S2B_QMIN + 5) /* 48 */
- S2B_8(S2B_QMIN + 6) /* 56 */
- S2B_8(S2B_QMIN + 7) /* 64 */
- S2B_8(S2B_QMIN + 8) /* 72 */
- S2B_8(S2B_QMIN + 9) /* 80 */
- S2B_8(S2B_QMIN + 10) /* 88 */
- S2B_8(S2B_QMIN + 11) /* 96 */
- S2B_8(S2B_QMIN + 12) /* 104 */
- S2B_8(S2B_QMIN + 13) /* 112 */
- S2B_8(S2B_QMIN + 14) /* 120 */
- S2B_8(S2B_QMIN + 15) /* 128 */
-# define S2B_CMIN (S2B_QMIN + 16)
-#endif
-/****************************************/
- S2B_64(S2B_CMIN + 0) /* 192 */
- S2B_64(S2B_CMIN + 1) /* 256 */
- S2B_64(S2B_CMIN + 2) /* 320 */
- S2B_64(S2B_CMIN + 3) /* 384 */
- S2B_64(S2B_CMIN + 4) /* 448 */
- S2B_64(S2B_CMIN + 5) /* 512 */
-# define S2B_SMIN (S2B_CMIN + 6)
- S2B_256(S2B_SMIN + 0) /* 768 */
- S2B_256(S2B_SMIN + 1) /* 1024 */
- S2B_256(S2B_SMIN + 2) /* 1280 */
- S2B_256(S2B_SMIN + 3) /* 1536 */
- S2B_256(S2B_SMIN + 4) /* 1792 */
- S2B_256(S2B_SMIN + 5) /* 2048 */
- S2B_256(S2B_SMIN + 6) /* 2304 */
- S2B_256(S2B_SMIN + 7) /* 2560 */
- S2B_256(S2B_SMIN + 8) /* 2816 */
- S2B_256(S2B_SMIN + 9) /* 3072 */
- S2B_256(S2B_SMIN + 10) /* 3328 */
- S2B_256(S2B_SMIN + 11) /* 3584 */
- S2B_256(S2B_SMIN + 12) /* 3840 */
-#if (PAGESIZE_2POW == 13)
- S2B_256(S2B_SMIN + 13) /* 4096 */
- S2B_256(S2B_SMIN + 14) /* 4352 */
- S2B_256(S2B_SMIN + 15) /* 4608 */
- S2B_256(S2B_SMIN + 16) /* 4864 */
- S2B_256(S2B_SMIN + 17) /* 5120 */
- S2B_256(S2B_SMIN + 18) /* 5376 */
- S2B_256(S2B_SMIN + 19) /* 5632 */
- S2B_256(S2B_SMIN + 20) /* 5888 */
- S2B_256(S2B_SMIN + 21) /* 6144 */
- S2B_256(S2B_SMIN + 22) /* 6400 */
- S2B_256(S2B_SMIN + 23) /* 6656 */
- S2B_256(S2B_SMIN + 24) /* 6912 */
- S2B_256(S2B_SMIN + 25) /* 7168 */
- S2B_256(S2B_SMIN + 26) /* 7424 */
- S2B_256(S2B_SMIN + 27) /* 7680 */
- S2B_256(S2B_SMIN + 28) /* 7936 */
-#endif
-};
-#undef S2B_1
-#undef S2B_2
-#undef S2B_4
-#undef S2B_8
-#undef S2B_16
-#undef S2B_32
-#undef S2B_64
-#undef S2B_128
-#undef S2B_256
-#undef S2B_QMIN
-#undef S2B_CMIN
-#undef S2B_SMIN
-
-#ifdef MALLOC_MAG
-static size_t max_rounds;
-#endif
-
-/* Various chunk-related settings. */
-static size_t chunksize;
-static size_t chunksize_mask; /* (chunksize - 1). */
-static size_t chunk_npages;
-static size_t arena_chunk_header_npages;
-static size_t arena_maxclass; /* Max size class for arenas. */
-
-/********/
-/*
- * Chunks.
- */
-
-/* Protects chunk-related data structures. */
-static malloc_mutex_t huge_mtx;
-
-/* Tree of chunks that are stand-alone huge allocations. */
-static extent_tree_t huge;
-
-#ifdef MALLOC_DSS
-/*
- * Protects sbrk() calls. This avoids malloc races among threads, though it
- * does not protect against races with threads that call sbrk() directly.
- */
-static malloc_mutex_t dss_mtx;
-/* Base address of the DSS. */
-static void *dss_base;
-/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
-static void *dss_prev;
-/* Current upper limit on DSS addresses. */
-static void *dss_max;
-
-/*
- * Trees of chunks that were previously allocated (trees differ only in node
- * ordering). These are used when allocating chunks, in an attempt to re-use
- * address space. Depending on function, different tree orderings are needed,
- * which is why there are two trees with the same contents.
- */
-static extent_tree_t dss_chunks_szad;
-static extent_tree_t dss_chunks_ad;
-#endif
-
-#ifdef MALLOC_STATS
-/* Huge allocation statistics. */
-static uint64_t huge_nmalloc;
-static uint64_t huge_ndalloc;
-static size_t huge_allocated;
-#endif
-
-/****************************/
-/*
- * base (internal allocation).
- */
-
-/*
- * Current pages that are being used for internal memory allocations. These
- * pages are carved up in cacheline-size quanta, so that there is no chance of
- * false cache line sharing.
- */
-static void *base_pages;
-static void *base_next_addr;
-static void *base_past_addr; /* Addr immediately past base_pages. */
-static extent_node_t *base_nodes;
-static malloc_mutex_t base_mtx;
-#ifdef MALLOC_STATS
-static size_t base_mapped;
-#endif
-
-/********/
-/*
- * Arenas.
- */
-
-/*
- * Arenas that are used to service external requests. Not all elements of the
- * arenas array are necessarily used; arenas are created lazily as needed.
- */
-static arena_t **arenas;
-static unsigned narenas;
-#ifndef NO_TLS
-# ifdef MALLOC_BALANCE
-static unsigned narenas_2pow;
-# else
-static unsigned next_arena;
-# endif
-#endif
-static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
-
-#ifndef NO_TLS
-/*
- * Map of pthread_self() --> arenas[???], used for selecting an arena to use
- * for allocations.
- */
-static __thread arena_t *arenas_map;
-#endif
-
-#ifdef MALLOC_MAG
-/*
- * Map of thread-specific magazine racks, used for thread-specific object
- * caching.
- */
-static __thread mag_rack_t *mag_rack;
-#endif
-
-#ifdef MALLOC_STATS
-/* Chunk statistics. */
-static chunk_stats_t stats_chunks;
-#endif
-
-/*******************************/
-/*
- * Runtime configuration options.
- */
-const char *_malloc_options;
-
-#ifndef MALLOC_PRODUCTION
-static bool opt_abort = true;
-static bool opt_junk = true;
-#else
-static bool opt_abort = false;
-static bool opt_junk = false;
-#endif
-#ifdef MALLOC_DSS
-static bool opt_dss = true;
-static bool opt_mmap = true;
-#endif
-#ifdef MALLOC_MAG
-static bool opt_mag = true;
-static size_t opt_mag_size_2pow = MAG_SIZE_2POW_DEFAULT;
-#endif
-static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
-#ifdef MALLOC_BALANCE
-static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
-#endif
-static bool opt_print_stats = false;
-static size_t opt_qspace_max_2pow = QSPACE_MAX_2POW_DEFAULT;
-static size_t opt_cspace_max_2pow = CSPACE_MAX_2POW_DEFAULT;
-static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
-static bool opt_utrace = false;
-static bool opt_sysv = false;
-static bool opt_xmalloc = false;
-static bool opt_zero = false;
-static int opt_narenas_lshift = 0;
-
-typedef struct {
- void *p;
- size_t s;
- void *r;
-} malloc_utrace_t;
-
-#define UTRACE(a, b, c) \
- if (opt_utrace) { \
- malloc_utrace_t ut; \
- ut.p = (a); \
- ut.s = (b); \
- ut.r = (c); \
- utrace(&ut, sizeof(ut)); \
- }
-
-/******************************************************************************/
-/*
- * Begin function prototypes for non-inline static functions.
- */
-
-static void malloc_mutex_init(malloc_mutex_t *mutex);
-static bool malloc_spin_init(pthread_mutex_t *lock);
-static void wrtmessage(const char *p1, const char *p2, const char *p3,
- const char *p4);
-#ifdef MALLOC_STATS
-static void malloc_printf(const char *format, ...);
-#endif
-static char *umax2s(uintmax_t x, char *s);
-#ifdef MALLOC_DSS
-static bool base_pages_alloc_dss(size_t minsize);
-#endif
-static bool base_pages_alloc_mmap(size_t minsize);
-static bool base_pages_alloc(size_t minsize);
-static void *base_alloc(size_t size);
-static void *base_calloc(size_t number, size_t size);
-static extent_node_t *base_node_alloc(void);
-static void base_node_dealloc(extent_node_t *node);
-#ifdef MALLOC_STATS
-static void stats_print(arena_t *arena);
-#endif
-static void *pages_map(void *addr, size_t size);
-static void pages_unmap(void *addr, size_t size);
-#ifdef MALLOC_DSS
-static void *chunk_alloc_dss(size_t size);
-static void *chunk_recycle_dss(size_t size, bool zero);
-#endif
-static void *chunk_alloc_mmap(size_t size);
-static void *chunk_alloc(size_t size, bool zero);
-#ifdef MALLOC_DSS
-static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
-static bool chunk_dealloc_dss(void *chunk, size_t size);
-#endif
-static void chunk_dealloc_mmap(void *chunk, size_t size);
-static void chunk_dealloc(void *chunk, size_t size);
-#ifndef NO_TLS
-static arena_t *choose_arena_hard(void);
-#endif
-static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
- bool large, bool zero);
-static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
-static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
-static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
- bool zero);
-static void arena_purge(arena_t *arena);
-static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
-static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
- arena_run_t *run, size_t oldsize, size_t newsize);
-static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
- arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
-static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
-static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
-static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
-#ifdef MALLOC_BALANCE
-static void arena_lock_balance_hard(arena_t *arena);
-#endif
-#ifdef MALLOC_MAG
-static void mag_load(mag_t *mag);
-#endif
-static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
-static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
- size_t alloc_size);
-static size_t arena_salloc(const void *ptr);
-#ifdef MALLOC_MAG
-static void mag_unload(mag_t *mag);
-#endif
-static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
- void *ptr);
-static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
- void *ptr, size_t size, size_t oldsize);
-static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
- void *ptr, size_t size, size_t oldsize);
-static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
-static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
-static bool arena_new(arena_t *arena);
-static arena_t *arenas_extend(unsigned ind);
-#ifdef MALLOC_MAG
-static mag_t *mag_create(arena_t *arena, size_t binind);
-static void mag_destroy(mag_t *mag);
-static mag_rack_t *mag_rack_create(arena_t *arena);
-static void mag_rack_destroy(mag_rack_t *rack);
-#endif
-static void *huge_malloc(size_t size, bool zero);
-static void *huge_palloc(size_t alignment, size_t size);
-static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
-static void huge_dalloc(void *ptr);
-static void malloc_print_stats(void);
-#ifdef MALLOC_DEBUG
-static void size2bin_validate(void);
-#endif
-static bool size2bin_init(void);
-static bool size2bin_init_hard(void);
-static bool malloc_init_hard(void);
-
-/*
- * End function prototypes.
- */
-/******************************************************************************/
-/*
- * Begin mutex. We can't use normal pthread mutexes in all places, because
- * they require malloc()ed memory, which causes bootstrapping issues in some
- * cases.
- */
-
-static void
-malloc_mutex_init(malloc_mutex_t *mutex)
-{
- static const spinlock_t lock = _SPINLOCK_INITIALIZER;
-
- mutex->lock = lock;
-}
-
-static inline void
-malloc_mutex_lock(malloc_mutex_t *mutex)
-{
-
- if (__isthreaded)
- _SPINLOCK(&mutex->lock);
-}
-
-static inline void
-malloc_mutex_unlock(malloc_mutex_t *mutex)
-{
-
- if (__isthreaded)
- _SPINUNLOCK(&mutex->lock);
-}
-
-/*
- * End mutex.
- */
-/******************************************************************************/
-/*
- * Begin spin lock. Spin locks here are actually adaptive mutexes that block
- * after a period of spinning, because unbounded spinning would allow for
- * priority inversion.
- */
-
-/*
- * We use an unpublished interface to initialize pthread mutexes with an
- * allocation callback, in order to avoid infinite recursion.
- */
-int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
- void *(calloc_cb)(size_t, size_t));
-
-__weak_reference(_pthread_mutex_init_calloc_cb_stub,
- _pthread_mutex_init_calloc_cb);
-
-int
-_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
- void *(calloc_cb)(size_t, size_t))
-{
-
- return (0);
-}
-
-static bool
-malloc_spin_init(pthread_mutex_t *lock)
-{
-
- if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
- return (true);
-
- return (false);
-}
-
-static inline unsigned
-malloc_spin_lock(pthread_mutex_t *lock)
-{
- unsigned ret = 0;
-
- if (__isthreaded) {
- if (_pthread_mutex_trylock(lock) != 0) {
- unsigned i;
- volatile unsigned j;
-
- /* Exponentially back off. */
- for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
- for (j = 0; j < (1U << i); j++) {
- ret++;
- CPU_SPINWAIT;
- }
-
- if (_pthread_mutex_trylock(lock) == 0)
- return (ret);
- }
-
- /*
- * Spinning failed. Block until the lock becomes
- * available, in order to avoid indefinite priority
- * inversion.
- */
- _pthread_mutex_lock(lock);
- assert((ret << BLOCK_COST_2POW) != 0);
- return (ret << BLOCK_COST_2POW);
- }
- }
-
- return (ret);
-}
-
-static inline void
-malloc_spin_unlock(pthread_mutex_t *lock)
-{
-
- if (__isthreaded)
- _pthread_mutex_unlock(lock);
-}
-
-/*
- * End spin lock.
- */
-/******************************************************************************/
-/*
- * Begin Utility functions/macros.
- */
-
-/* Return the chunk address for allocation address a. */
-#define CHUNK_ADDR2BASE(a) \
- ((void *)((uintptr_t)(a) & ~chunksize_mask))
-
-/* Return the chunk offset of address a. */
-#define CHUNK_ADDR2OFFSET(a) \
- ((size_t)((uintptr_t)(a) & chunksize_mask))
-
-/* Return the smallest chunk multiple that is >= s. */
-#define CHUNK_CEILING(s) \
- (((s) + chunksize_mask) & ~chunksize_mask)
-
-/* Return the smallest quantum multiple that is >= a. */
-#define QUANTUM_CEILING(a) \
- (((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
-
-/* Return the smallest cacheline multiple that is >= s. */
-#define CACHELINE_CEILING(s) \
- (((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
-
-/* Return the smallest subpage multiple that is >= s. */
-#define SUBPAGE_CEILING(s) \
- (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
-
-/* Return the smallest pagesize multiple that is >= s. */
-#define PAGE_CEILING(s) \
- (((s) + pagesize_mask) & ~pagesize_mask)
-
-#ifdef MALLOC_TINY
-/* Compute the smallest power of 2 that is >= x. */
-static inline size_t
-pow2_ceil(size_t x)
-{
-
- x--;
- x |= x >> 1;
- x |= x >> 2;
- x |= x >> 4;
- x |= x >> 8;
- x |= x >> 16;
-#if (SIZEOF_PTR == 8)
- x |= x >> 32;
-#endif
- x++;
- return (x);
-}
-#endif
-
-#ifdef MALLOC_BALANCE
-/*
- * Use a simple linear congruential pseudo-random number generator:
- *
- * prn(y) = (a*x + c) % m
- *
- * where the following constants ensure maximal period:
- *
- * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
- * c == Odd number (relatively prime to 2^n).
- * m == 2^32
- *
- * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
- *
- * This choice of m has the disadvantage that the quality of the bits is
- * proportional to bit position. For example. the lowest bit has a cycle of 2,
- * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
- * bits.
- */
-# define PRN_DEFINE(suffix, var, a, c) \
-static inline void \
-sprn_##suffix(uint32_t seed) \
-{ \
- var = seed; \
-} \
- \
-static inline uint32_t \
-prn_##suffix(uint32_t lg_range) \
-{ \
- uint32_t ret, x; \
- \
- assert(lg_range > 0); \
- assert(lg_range <= 32); \
- \
- x = (var * (a)) + (c); \
- var = x; \
- ret = x >> (32 - lg_range); \
- \
- return (ret); \
-}
-# define SPRN(suffix, seed) sprn_##suffix(seed)
-# define PRN(suffix, lg_range) prn_##suffix(lg_range)
-#endif
-
-#ifdef MALLOC_BALANCE
-/* Define the PRNG used for arena assignment. */
-static __thread uint32_t balance_x;
-PRN_DEFINE(balance, balance_x, 1297, 1301)
-#endif
-
-static void
-wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
-{
-
- _write(STDERR_FILENO, p1, strlen(p1));
- _write(STDERR_FILENO, p2, strlen(p2));
- _write(STDERR_FILENO, p3, strlen(p3));
- _write(STDERR_FILENO, p4, strlen(p4));
-}
-
-void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
- const char *p4) = wrtmessage;
-
-#ifdef MALLOC_STATS
-/*
- * Print to stderr in such a way as to (hopefully) avoid memory allocation.
- */
-static void
-malloc_printf(const char *format, ...)
-{
- char buf[4096];
- va_list ap;
-
- va_start(ap, format);
- vsnprintf(buf, sizeof(buf), format, ap);
- va_end(ap);
- _malloc_message(buf, "", "", "");
-}
-#endif
-
-/*
- * We don't want to depend on vsnprintf() for production builds, since that can
- * cause unnecessary bloat for static binaries. umax2s() provides minimal
- * integer printing functionality, so that malloc_printf() use can be limited to
- * MALLOC_STATS code.
- */
-#define UMAX2S_BUFSIZE 21
-static char *
-umax2s(uintmax_t x, char *s)
-{
- unsigned i;
-
- /* Make sure UMAX2S_BUFSIZE is large enough. */
- assert(sizeof(uintmax_t) <= 8);
-
- i = UMAX2S_BUFSIZE - 1;
- s[i] = '\0';
- do {
- i--;
- s[i] = "0123456789"[x % 10];
- x /= 10;
- } while (x > 0);
-
- return (&s[i]);
-}
-
-/******************************************************************************/
-
-#ifdef MALLOC_DSS
-static bool
-base_pages_alloc_dss(size_t minsize)
-{
-
- /*
- * Do special DSS allocation here, since base allocations don't need to
- * be chunk-aligned.
- */
- malloc_mutex_lock(&dss_mtx);
- if (dss_prev != (void *)-1) {
- intptr_t incr;
- size_t csize = CHUNK_CEILING(minsize);
-
- do {
- /* Get the current end of the DSS. */
- dss_max = sbrk(0);
-
- /*
- * Calculate how much padding is necessary to
- * chunk-align the end of the DSS. Don't worry about
- * dss_max not being chunk-aligned though.
- */
- incr = (intptr_t)chunksize
- - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
- assert(incr >= 0);
- if ((size_t)incr < minsize)
- incr += csize;
-
- dss_prev = sbrk(incr);
- if (dss_prev == dss_max) {
- /* Success. */
- dss_max = (void *)((intptr_t)dss_prev + incr);
- base_pages = dss_prev;
- base_next_addr = base_pages;
- base_past_addr = dss_max;
-#ifdef MALLOC_STATS
- base_mapped += incr;
-#endif
- malloc_mutex_unlock(&dss_mtx);
- return (false);
- }
- } while (dss_prev != (void *)-1);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- return (true);
-}
-#endif
-
-static bool
-base_pages_alloc_mmap(size_t minsize)
-{
- size_t csize;
-
- assert(minsize != 0);
- csize = PAGE_CEILING(minsize);
- base_pages = pages_map(NULL, csize);
- if (base_pages == NULL)
- return (true);
- base_next_addr = base_pages;
- base_past_addr = (void *)((uintptr_t)base_pages + csize);
-#ifdef MALLOC_STATS
- base_mapped += csize;
-#endif
-
- return (false);
-}
-
-static bool
-base_pages_alloc(size_t minsize)
-{
-
-#ifdef MALLOC_DSS
- if (opt_dss) {
- if (base_pages_alloc_dss(minsize) == false)
- return (false);
- }
-
- if (opt_mmap && minsize != 0)
-#endif
- {
- if (base_pages_alloc_mmap(minsize) == false)
- return (false);
- }
-
- return (true);
-}
-
-static void *
-base_alloc(size_t size)
-{
- void *ret;
- size_t csize;
-
- /* Round size up to nearest multiple of the cacheline size. */
- csize = CACHELINE_CEILING(size);
-
- malloc_mutex_lock(&base_mtx);
- /* Make sure there's enough space for the allocation. */
- if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
- if (base_pages_alloc(csize)) {
- malloc_mutex_unlock(&base_mtx);
- return (NULL);
- }
- }
- /* Allocate. */
- ret = base_next_addr;
- base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
- malloc_mutex_unlock(&base_mtx);
-
- return (ret);
-}
-
-static void *
-base_calloc(size_t number, size_t size)
-{
- void *ret;
-
- ret = base_alloc(number * size);
- memset(ret, 0, number * size);
-
- return (ret);
-}
-
-static extent_node_t *
-base_node_alloc(void)
-{
- extent_node_t *ret;
-
- malloc_mutex_lock(&base_mtx);
- if (base_nodes != NULL) {
- ret = base_nodes;
- base_nodes = *(extent_node_t **)ret;
- malloc_mutex_unlock(&base_mtx);
- } else {
- malloc_mutex_unlock(&base_mtx);
- ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
- }
-
- return (ret);
-}
-
-static void
-base_node_dealloc(extent_node_t *node)
-{
-
- malloc_mutex_lock(&base_mtx);
- *(extent_node_t **)node = base_nodes;
- base_nodes = node;
- malloc_mutex_unlock(&base_mtx);
-}
-
-/******************************************************************************/
-
-#ifdef MALLOC_STATS
-static void
-stats_print(arena_t *arena)
-{
- unsigned i, gap_start;
-
- malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
- " %llu madvise%s, %llu page%s purged\n",
- arena->ndirty, arena->ndirty == 1 ? "" : "s",
- arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
- arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
- arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
-
- malloc_printf(" allocated nmalloc ndalloc\n");
- malloc_printf("small: %12zu %12llu %12llu\n",
- arena->stats.allocated_small, arena->stats.nmalloc_small,
- arena->stats.ndalloc_small);
- malloc_printf("large: %12zu %12llu %12llu\n",
- arena->stats.allocated_large, arena->stats.nmalloc_large,
- arena->stats.ndalloc_large);
- malloc_printf("total: %12zu %12llu %12llu\n",
- arena->stats.allocated_small + arena->stats.allocated_large,
- arena->stats.nmalloc_small + arena->stats.nmalloc_large,
- arena->stats.ndalloc_small + arena->stats.ndalloc_large);
- malloc_printf("mapped: %12zu\n", arena->stats.mapped);
-
-#ifdef MALLOC_MAG
- if (__isthreaded && opt_mag) {
- malloc_printf("bins: bin size regs pgs mags "
- "newruns reruns maxruns curruns\n");
- } else {
-#endif
- malloc_printf("bins: bin size regs pgs requests "
- "newruns reruns maxruns curruns\n");
-#ifdef MALLOC_MAG
- }
-#endif
- for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
- if (arena->bins[i].stats.nruns == 0) {
- if (gap_start == UINT_MAX)
- gap_start = i;
- } else {
- if (gap_start != UINT_MAX) {
- if (i > gap_start + 1) {
- /* Gap of more than one size class. */
- malloc_printf("[%u..%u]\n",
- gap_start, i - 1);
- } else {
- /* Gap of one size class. */
- malloc_printf("[%u]\n", gap_start);
- }
- gap_start = UINT_MAX;
- }
- malloc_printf(
- "%13u %1s %4u %4u %3u %9llu %9llu"
- " %9llu %7lu %7lu\n",
- i,
- i < ntbins ? "T" : i < ntbins + nqbins ? "Q" :
- i < ntbins + nqbins + ncbins ? "C" : "S",
- arena->bins[i].reg_size,
- arena->bins[i].nregs,
- arena->bins[i].run_size >> pagesize_2pow,
-#ifdef MALLOC_MAG
- (__isthreaded && opt_mag) ?
- arena->bins[i].stats.nmags :
-#endif
- arena->bins[i].stats.nrequests,
- arena->bins[i].stats.nruns,
- arena->bins[i].stats.reruns,
- arena->bins[i].stats.highruns,
- arena->bins[i].stats.curruns);
- }
- }
- if (gap_start != UINT_MAX) {
- if (i > gap_start + 1) {
- /* Gap of more than one size class. */
- malloc_printf("[%u..%u]\n", gap_start, i - 1);
- } else {
- /* Gap of one size class. */
- malloc_printf("[%u]\n", gap_start);
- }
- }
-}
-#endif
-
-/*
- * End Utility functions/macros.
- */
-/******************************************************************************/
-/*
- * Begin extent tree code.
- */
-
-#ifdef MALLOC_DSS
-static inline int
-extent_szad_comp(extent_node_t *a, extent_node_t *b)
-{
- int ret;
- size_t a_size = a->size;
- size_t b_size = b->size;
-
- ret = (a_size > b_size) - (a_size < b_size);
- if (ret == 0) {
- uintptr_t a_addr = (uintptr_t)a->addr;
- uintptr_t b_addr = (uintptr_t)b->addr;
-
- ret = (a_addr > b_addr) - (a_addr < b_addr);
- }
-
- return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t,
- link_szad, extent_szad_comp)
-#endif
-
-static inline int
-extent_ad_comp(extent_node_t *a, extent_node_t *b)
-{
- uintptr_t a_addr = (uintptr_t)a->addr;
- uintptr_t b_addr = (uintptr_t)b->addr;
-
- return ((a_addr > b_addr) - (a_addr < b_addr));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
- extent_ad_comp)
-
-/*
- * End extent tree code.
- */
-/******************************************************************************/
-/*
- * Begin chunk management functions.
- */
-
-static void *
-pages_map(void *addr, size_t size)
-{
- void *ret;
-
- /*
- * We don't use MAP_FIXED here, because it can cause the *replacement*
- * of existing mappings, and we only want to create new mappings.
- */
- ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
- -1, 0);
- assert(ret != NULL);
-
- if (ret == MAP_FAILED)
- ret = NULL;
- else if (addr != NULL && ret != addr) {
- /*
- * We succeeded in mapping memory, but not in the right place.
- */
- if (munmap(ret, size) == -1) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(),
- ": (malloc) Error in munmap(): ", buf, "\n");
- if (opt_abort)
- abort();
- }
- ret = NULL;
- }
-
- assert(ret == NULL || (addr == NULL && ret != addr)
- || (addr != NULL && ret == addr));
- return (ret);
-}
-
-static void
-pages_unmap(void *addr, size_t size)
-{
-
- if (munmap(addr, size) == -1) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(),
- ": (malloc) Error in munmap(): ", buf, "\n");
- if (opt_abort)
- abort();
- }
-}
-
-#ifdef MALLOC_DSS
-static void *
-chunk_alloc_dss(size_t size)
-{
-
- /*
- * sbrk() uses a signed increment argument, so take care not to
- * interpret a huge allocation request as a negative increment.
- */
- if ((intptr_t)size < 0)
- return (NULL);
-
- malloc_mutex_lock(&dss_mtx);
- if (dss_prev != (void *)-1) {
- intptr_t incr;
-
- /*
- * The loop is necessary to recover from races with other
- * threads that are using the DSS for something other than
- * malloc.
- */
- do {
- void *ret;
-
- /* Get the current end of the DSS. */
- dss_max = sbrk(0);
-
- /*
- * Calculate how much padding is necessary to
- * chunk-align the end of the DSS.
- */
- incr = (intptr_t)size
- - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
- if (incr == (intptr_t)size)
- ret = dss_max;
- else {
- ret = (void *)((intptr_t)dss_max + incr);
- incr += size;
- }
-
- dss_prev = sbrk(incr);
- if (dss_prev == dss_max) {
- /* Success. */
- dss_max = (void *)((intptr_t)dss_prev + incr);
- malloc_mutex_unlock(&dss_mtx);
- return (ret);
- }
- } while (dss_prev != (void *)-1);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- return (NULL);
-}
-
-static void *
-chunk_recycle_dss(size_t size, bool zero)
-{
- extent_node_t *node, key;
-
- key.addr = NULL;
- key.size = size;
- malloc_mutex_lock(&dss_mtx);
- node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
- if (node != NULL) {
- void *ret = node->addr;
-
- /* Remove node from the tree. */
- extent_tree_szad_remove(&dss_chunks_szad, node);
- if (node->size == size) {
- extent_tree_ad_remove(&dss_chunks_ad, node);
- base_node_dealloc(node);
- } else {
- /*
- * Insert the remainder of node's address range as a
- * smaller chunk. Its position within dss_chunks_ad
- * does not change.
- */
- assert(node->size > size);
- node->addr = (void *)((uintptr_t)node->addr + size);
- node->size -= size;
- extent_tree_szad_insert(&dss_chunks_szad, node);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- if (zero)
- memset(ret, 0, size);
- return (ret);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- return (NULL);
-}
-#endif
-
-static void *
-chunk_alloc_mmap(size_t size)
-{
- void *ret;
- size_t offset;
-
- /*
- * Ideally, there would be a way to specify alignment to mmap() (like
- * NetBSD has), but in the absence of such a feature, we have to work
- * hard to efficiently create aligned mappings. The reliable, but
- * expensive method is to create a mapping that is over-sized, then
- * trim the excess. However, that always results in at least one call
- * to pages_unmap().
- *
- * A more optimistic approach is to try mapping precisely the right
- * amount, then try to append another mapping if alignment is off. In
- * practice, this works out well as long as the application is not
- * interleaving mappings via direct mmap() calls. If we do run into a
- * situation where there is an interleaved mapping and we are unable to
- * extend an unaligned mapping, our best option is to momentarily
- * revert to the reliable-but-expensive method. This will tend to
- * leave a gap in the memory map that is too small to cause later
- * problems for the optimistic method.
- */
-
- ret = pages_map(NULL, size);
- if (ret == NULL)
- return (NULL);
-
- offset = CHUNK_ADDR2OFFSET(ret);
- if (offset != 0) {
- /* Try to extend chunk boundary. */
- if (pages_map((void *)((uintptr_t)ret + size),
- chunksize - offset) == NULL) {
- /*
- * Extension failed. Clean up, then revert to the
- * reliable-but-expensive method.
- */
- pages_unmap(ret, size);
-
- /* Beware size_t wrap-around. */
- if (size + chunksize <= size)
- return NULL;
-
- ret = pages_map(NULL, size + chunksize);
- if (ret == NULL)
- return (NULL);
-
- /* Clean up unneeded leading/trailing space. */
- offset = CHUNK_ADDR2OFFSET(ret);
- if (offset != 0) {
- /* Leading space. */
- pages_unmap(ret, chunksize - offset);
-
- ret = (void *)((uintptr_t)ret +
- (chunksize - offset));
-
- /* Trailing space. */
- pages_unmap((void *)((uintptr_t)ret + size),
- offset);
- } else {
- /* Trailing space only. */
- pages_unmap((void *)((uintptr_t)ret + size),
- chunksize);
- }
- } else {
- /* Clean up unneeded leading space. */
- pages_unmap(ret, chunksize - offset);
- ret = (void *)((uintptr_t)ret + (chunksize - offset));
- }
- }
-
- return (ret);
-}
-
-static void *
-chunk_alloc(size_t size, bool zero)
-{
- void *ret;
-
- assert(size != 0);
- assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_DSS
- if (opt_dss) {
- ret = chunk_recycle_dss(size, zero);
- if (ret != NULL) {
- goto RETURN;
- }
-
- ret = chunk_alloc_dss(size);
- if (ret != NULL)
- goto RETURN;
- }
-
- if (opt_mmap)
-#endif
- {
- ret = chunk_alloc_mmap(size);
- if (ret != NULL)
- goto RETURN;
- }
-
- /* All strategies for allocation failed. */
- ret = NULL;
-RETURN:
-#ifdef MALLOC_STATS
- if (ret != NULL) {
- stats_chunks.nchunks += (size / chunksize);
- stats_chunks.curchunks += (size / chunksize);
- }
- if (stats_chunks.curchunks > stats_chunks.highchunks)
- stats_chunks.highchunks = stats_chunks.curchunks;
-#endif
-
- assert(CHUNK_ADDR2BASE(ret) == ret);
- return (ret);
-}
-
-#ifdef MALLOC_DSS
-static extent_node_t *
-chunk_dealloc_dss_record(void *chunk, size_t size)
-{
- extent_node_t *node, *prev, key;
-
- key.addr = (void *)((uintptr_t)chunk + size);
- node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
- /* Try to coalesce forward. */
- if (node != NULL && node->addr == key.addr) {
- /*
- * Coalesce chunk with the following address range. This does
- * not change the position within dss_chunks_ad, so only
- * remove/insert from/into dss_chunks_szad.
- */
- extent_tree_szad_remove(&dss_chunks_szad, node);
- node->addr = chunk;
- node->size += size;
- extent_tree_szad_insert(&dss_chunks_szad, node);
- } else {
- /*
- * Coalescing forward failed, so insert a new node. Drop
- * dss_mtx during node allocation, since it is possible that a
- * new base chunk will be allocated.
- */
- malloc_mutex_unlock(&dss_mtx);
- node = base_node_alloc();
- malloc_mutex_lock(&dss_mtx);
- if (node == NULL)
- return (NULL);
- node->addr = chunk;
- node->size = size;
- extent_tree_ad_insert(&dss_chunks_ad, node);
- extent_tree_szad_insert(&dss_chunks_szad, node);
- }
-
- /* Try to coalesce backward. */
- prev = extent_tree_ad_prev(&dss_chunks_ad, node);
- if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
- chunk) {
- /*
- * Coalesce chunk with the previous address range. This does
- * not change the position within dss_chunks_ad, so only
- * remove/insert node from/into dss_chunks_szad.
- */
- extent_tree_szad_remove(&dss_chunks_szad, prev);
- extent_tree_ad_remove(&dss_chunks_ad, prev);
-
- extent_tree_szad_remove(&dss_chunks_szad, node);
- node->addr = prev->addr;
- node->size += prev->size;
- extent_tree_szad_insert(&dss_chunks_szad, node);
-
- base_node_dealloc(prev);
- }
-
- return (node);
-}
-
-static bool
-chunk_dealloc_dss(void *chunk, size_t size)
-{
-
- malloc_mutex_lock(&dss_mtx);
- if ((uintptr_t)chunk >= (uintptr_t)dss_base
- && (uintptr_t)chunk < (uintptr_t)dss_max) {
- extent_node_t *node;
-
- /* Try to coalesce with other unused chunks. */
- node = chunk_dealloc_dss_record(chunk, size);
- if (node != NULL) {
- chunk = node->addr;
- size = node->size;
- }
-
- /* Get the current end of the DSS. */
- dss_max = sbrk(0);
-
- /*
- * Try to shrink the DSS if this chunk is at the end of the
- * DSS. The sbrk() call here is subject to a race condition
- * with threads that use brk(2) or sbrk(2) directly, but the
- * alternative would be to leak memory for the sake of poorly
- * designed multi-threaded programs.
- */
- if ((void *)((uintptr_t)chunk + size) == dss_max
- && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
- /* Success. */
- dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
-
- if (node != NULL) {
- extent_tree_szad_remove(&dss_chunks_szad, node);
- extent_tree_ad_remove(&dss_chunks_ad, node);
- base_node_dealloc(node);
- }
- malloc_mutex_unlock(&dss_mtx);
- } else {
- malloc_mutex_unlock(&dss_mtx);
- madvise(chunk, size, MADV_FREE);
- }
-
- return (false);
- }
- malloc_mutex_unlock(&dss_mtx);
-
- return (true);
-}
-#endif
-
-static void
-chunk_dealloc_mmap(void *chunk, size_t size)
-{
-
- pages_unmap(chunk, size);
-}
-
-static void
-chunk_dealloc(void *chunk, size_t size)
-{
-
- assert(chunk != NULL);
- assert(CHUNK_ADDR2BASE(chunk) == chunk);
- assert(size != 0);
- assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_STATS
- stats_chunks.curchunks -= (size / chunksize);
-#endif
-
-#ifdef MALLOC_DSS
- if (opt_dss) {
- if (chunk_dealloc_dss(chunk, size) == false)
- return;
- }
-
- if (opt_mmap)
-#endif
- chunk_dealloc_mmap(chunk, size);
-}
-
-/*
- * End chunk management functions.
- */
-/******************************************************************************/
-/*
- * Begin arena.
- */
-
-/*
- * Choose an arena based on a per-thread value (fast-path code, calls slow-path
- * code if necessary).
- */
-static inline arena_t *
-choose_arena(void)
-{
- arena_t *ret;
-
- /*
- * We can only use TLS if this is a PIC library, since for the static
- * library version, libc's malloc is used by TLS allocation, which
- * introduces a bootstrapping issue.
- */
-#ifndef NO_TLS
- if (__isthreaded == false) {
- /* Avoid the overhead of TLS for single-threaded operation. */
- return (arenas[0]);
- }
-
- ret = arenas_map;
- if (ret == NULL) {
- ret = choose_arena_hard();
- assert(ret != NULL);
- }
-#else
- if (__isthreaded && narenas > 1) {
- unsigned long ind;
-
- /*
- * Hash _pthread_self() to one of the arenas. There is a prime
- * number of arenas, so this has a reasonable chance of
- * working. Even so, the hashing can be easily thwarted by
- * inconvenient _pthread_self() values. Without specific
- * knowledge of how _pthread_self() calculates values, we can't
- * easily do much better than this.
- */
- ind = (unsigned long) _pthread_self() % narenas;
-
- /*
- * Optimistially assume that arenas[ind] has been initialized.
- * At worst, we find out that some other thread has already
- * done so, after acquiring the lock in preparation. Note that
- * this lazy locking also has the effect of lazily forcing
- * cache coherency; without the lock acquisition, there's no
- * guarantee that modification of arenas[ind] by another thread
- * would be seen on this CPU for an arbitrary amount of time.
- *
- * In general, this approach to modifying a synchronized value
- * isn't a good idea, but in this case we only ever modify the
- * value once, so things work out well.
- */
- ret = arenas[ind];
- if (ret == NULL) {
- /*
- * Avoid races with another thread that may have already
- * initialized arenas[ind].
- */
- malloc_spin_lock(&arenas_lock);
- if (arenas[ind] == NULL)
- ret = arenas_extend((unsigned)ind);
- else
- ret = arenas[ind];
- malloc_spin_unlock(&arenas_lock);
- }
- } else
- ret = arenas[0];
-#endif
-
- assert(ret != NULL);
- return (ret);
-}
-
-#ifndef NO_TLS
-/*
- * Choose an arena based on a per-thread value (slow-path code only, called
- * only by choose_arena()).
- */
-static arena_t *
-choose_arena_hard(void)
-{
- arena_t *ret;
-
- assert(__isthreaded);
-
-#ifdef MALLOC_BALANCE
- /* Seed the PRNG used for arena load balancing. */
- SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
-#endif
-
- if (narenas > 1) {
-#ifdef MALLOC_BALANCE
- unsigned ind;
-
- ind = PRN(balance, narenas_2pow);
- if ((ret = arenas[ind]) == NULL) {
- malloc_spin_lock(&arenas_lock);
- if ((ret = arenas[ind]) == NULL)
- ret = arenas_extend(ind);
- malloc_spin_unlock(&arenas_lock);
- }
-#else
- malloc_spin_lock(&arenas_lock);
- if ((ret = arenas[next_arena]) == NULL)
- ret = arenas_extend(next_arena);
- next_arena = (next_arena + 1) % narenas;
- malloc_spin_unlock(&arenas_lock);
-#endif
- } else
- ret = arenas[0];
-
- arenas_map = ret;
-
- return (ret);
-}
-#endif
-
-static inline int
-arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
-{
- uintptr_t a_chunk = (uintptr_t)a;
- uintptr_t b_chunk = (uintptr_t)b;
-
- assert(a != NULL);
- assert(b != NULL);
-
- return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
- arena_chunk_t, link_dirty, arena_chunk_comp)
-
-static inline int
-arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
- uintptr_t a_mapelm = (uintptr_t)a;
- uintptr_t b_mapelm = (uintptr_t)b;
-
- assert(a != NULL);
- assert(b != NULL);
-
- return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
- link, arena_run_comp)
-
-static inline int
-arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
- int ret;
- size_t a_size = a->bits & ~pagesize_mask;
- size_t b_size = b->bits & ~pagesize_mask;
-
- ret = (a_size > b_size) - (a_size < b_size);
- if (ret == 0) {
- uintptr_t a_mapelm, b_mapelm;
-
- if ((a->bits & CHUNK_MAP_KEY) == 0)
- a_mapelm = (uintptr_t)a;
- else {
- /*
- * Treat keys as though they are lower than anything
- * else.
- */
- a_mapelm = 0;
- }
- b_mapelm = (uintptr_t)b;
-
- ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
- }
-
- return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(__unused static, arena_avail_tree_, arena_avail_tree_t,
- arena_chunk_map_t, link, arena_avail_comp)
-
-static inline void *
-arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
-{
- void *ret;
- unsigned i, mask, bit, regind;
-
- assert(run->magic == ARENA_RUN_MAGIC);
- assert(run->regs_minelm < bin->regs_mask_nelms);
-
- /*
- * Move the first check outside the loop, so that run->regs_minelm can
- * be updated unconditionally, without the possibility of updating it
- * multiple times.
- */
- i = run->regs_minelm;
- mask = run->regs_mask[i];
- if (mask != 0) {
- /* Usable allocation found. */
- bit = ffs((int)mask) - 1;
-
- regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
- assert(regind < bin->nregs);
- ret = (void *)(((uintptr_t)run) + bin->reg0_offset
- + (bin->reg_size * regind));
-
- /* Clear bit. */
- mask ^= (1U << bit);
- run->regs_mask[i] = mask;
-
- return (ret);
- }
-
- for (i++; i < bin->regs_mask_nelms; i++) {
- mask = run->regs_mask[i];
- if (mask != 0) {
- /* Usable allocation found. */
- bit = ffs((int)mask) - 1;
-
- regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
- assert(regind < bin->nregs);
- ret = (void *)(((uintptr_t)run) + bin->reg0_offset
- + (bin->reg_size * regind));
-
- /* Clear bit. */
- mask ^= (1U << bit);
- run->regs_mask[i] = mask;
-
- /*
- * Make a note that nothing before this element
- * contains a free region.
- */
- run->regs_minelm = i; /* Low payoff: + (mask == 0); */
-
- return (ret);
- }
- }
- /* Not reached. */
- assert(0);
- return (NULL);
-}
-
-static inline void
-arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
-{
- unsigned diff, regind, elm, bit;
-
- assert(run->magic == ARENA_RUN_MAGIC);
-
- /*
- * Avoid doing division with a variable divisor if possible. Using
- * actual division here can reduce allocator throughput by over 20%!
- */
- diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
- if ((size & (size - 1)) == 0) {
- /*
- * log2_table allows fast division of a power of two in the
- * [1..128] range.
- *
- * (x / divisor) becomes (x >> log2_table[divisor - 1]).
- */
- static const unsigned char log2_table[] = {
- 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
- };
-
- if (size <= 128)
- regind = (diff >> log2_table[size - 1]);
- else if (size <= 32768)
- regind = diff >> (8 + log2_table[(size >> 8) - 1]);
- else
- regind = diff / size;
- } else if (size < qspace_max) {
- /*
- * To divide by a number D that is not a power of two we
- * multiply by (2^21 / D) and then right shift by 21 positions.
- *
- * X / D
- *
- * becomes
- *
- * (X * qsize_invs[(D >> QUANTUM_2POW) - 3])
- * >> SIZE_INV_SHIFT
- *
- * We can omit the first three elements, because we never
- * divide by 0, and QUANTUM and 2*QUANTUM are both powers of
- * two, which are handled above.
- */
-#define SIZE_INV_SHIFT 21
-#define QSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW)) + 1)
- static const unsigned qsize_invs[] = {
- QSIZE_INV(3),
- QSIZE_INV(4), QSIZE_INV(5), QSIZE_INV(6), QSIZE_INV(7)
-#if (QUANTUM_2POW < 4)
- ,
- QSIZE_INV(8), QSIZE_INV(9), QSIZE_INV(10), QSIZE_INV(11),
- QSIZE_INV(12),QSIZE_INV(13), QSIZE_INV(14), QSIZE_INV(15)
-#endif
- };
- assert(QUANTUM * (((sizeof(qsize_invs)) / sizeof(unsigned)) + 3)
- >= (1U << QSPACE_MAX_2POW_DEFAULT));
-
- if (size <= (((sizeof(qsize_invs) / sizeof(unsigned)) + 2) <<
- QUANTUM_2POW)) {
- regind = qsize_invs[(size >> QUANTUM_2POW) - 3] * diff;
- regind >>= SIZE_INV_SHIFT;
- } else
- regind = diff / size;
-#undef QSIZE_INV
- } else if (size < cspace_max) {
-#define CSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << CACHELINE_2POW)) + 1)
- static const unsigned csize_invs[] = {
- CSIZE_INV(3),
- CSIZE_INV(4), CSIZE_INV(5), CSIZE_INV(6), CSIZE_INV(7)
- };
- assert(CACHELINE * (((sizeof(csize_invs)) / sizeof(unsigned)) +
- 3) >= (1U << CSPACE_MAX_2POW_DEFAULT));
-
- if (size <= (((sizeof(csize_invs) / sizeof(unsigned)) + 2) <<
- CACHELINE_2POW)) {
- regind = csize_invs[(size >> CACHELINE_2POW) - 3] *
- diff;
- regind >>= SIZE_INV_SHIFT;
- } else
- regind = diff / size;
-#undef CSIZE_INV
- } else {
-#define SSIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << SUBPAGE_2POW)) + 1)
- static const unsigned ssize_invs[] = {
- SSIZE_INV(3),
- SSIZE_INV(4), SSIZE_INV(5), SSIZE_INV(6), SSIZE_INV(7),
- SSIZE_INV(8), SSIZE_INV(9), SSIZE_INV(10), SSIZE_INV(11),
- SSIZE_INV(12), SSIZE_INV(13), SSIZE_INV(14), SSIZE_INV(15)
-#if (PAGESIZE_2POW == 13)
- ,
- SSIZE_INV(16), SSIZE_INV(17), SSIZE_INV(18), SSIZE_INV(19),
- SSIZE_INV(20), SSIZE_INV(21), SSIZE_INV(22), SSIZE_INV(23),
- SSIZE_INV(24), SSIZE_INV(25), SSIZE_INV(26), SSIZE_INV(27),
- SSIZE_INV(28), SSIZE_INV(29), SSIZE_INV(29), SSIZE_INV(30)
-#endif
- };
- assert(SUBPAGE * (((sizeof(ssize_invs)) / sizeof(unsigned)) + 3)
- >= (1U << PAGESIZE_2POW));
-
- if (size < (((sizeof(ssize_invs) / sizeof(unsigned)) + 2) <<
- SUBPAGE_2POW)) {
- regind = ssize_invs[(size >> SUBPAGE_2POW) - 3] * diff;
- regind >>= SIZE_INV_SHIFT;
- } else
- regind = diff / size;
-#undef SSIZE_INV
- }
-#undef SIZE_INV_SHIFT
- assert(diff == regind * size);
- assert(regind < bin->nregs);
-
- elm = regind >> (SIZEOF_INT_2POW + 3);
- if (elm < run->regs_minelm)
- run->regs_minelm = elm;
- bit = regind - (elm << (SIZEOF_INT_2POW + 3));
- assert((run->regs_mask[elm] & (1U << bit)) == 0);
- run->regs_mask[elm] |= (1U << bit);
-}
-
-static void
-arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
- bool zero)
-{
- arena_chunk_t *chunk;
- size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
- old_ndirty = chunk->ndirty;
- run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
- >> pagesize_2pow);
- total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
- pagesize_2pow;
- need_pages = (size >> pagesize_2pow);
- assert(need_pages > 0);
- assert(need_pages <= total_pages);
- rem_pages = total_pages - need_pages;
-
- arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
-
- /* Keep track of trailing unused pages for later use. */
- if (rem_pages > 0) {
- chunk->map[run_ind+need_pages].bits = (rem_pages <<
- pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
- pagesize_mask);
- chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
- pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
- pagesize_mask);
- arena_avail_tree_insert(&arena->runs_avail,
- &chunk->map[run_ind+need_pages]);
- }
-
- for (i = 0; i < need_pages; i++) {
- /* Zero if necessary. */
- if (zero) {
- if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
- == 0) {
- memset((void *)((uintptr_t)chunk + ((run_ind
- + i) << pagesize_2pow)), 0, pagesize);
- /* CHUNK_MAP_ZEROED is cleared below. */
- }
- }
-
- /* Update dirty page accounting. */
- if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
- chunk->ndirty--;
- arena->ndirty--;
- /* CHUNK_MAP_DIRTY is cleared below. */
- }
-
- /* Initialize the chunk map. */
- if (large) {
- chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
- | CHUNK_MAP_ALLOCATED;
- } else {
- chunk->map[run_ind + i].bits = (size_t)run
- | CHUNK_MAP_ALLOCATED;
- }
- }
-
- /*
- * Set the run size only in the first element for large runs. This is
- * primarily a debugging aid, since the lack of size info for trailing
- * pages only matters if the application tries to operate on an
- * interior pointer.
- */
- if (large)
- chunk->map[run_ind].bits |= size;
-
- if (chunk->ndirty == 0 && old_ndirty > 0)
- arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
-}
-
-static arena_chunk_t *
-arena_chunk_alloc(arena_t *arena)
-{
- arena_chunk_t *chunk;
- size_t i;
-
- if (arena->spare != NULL) {
- chunk = arena->spare;
- arena->spare = NULL;
- } else {
- chunk = (arena_chunk_t *)chunk_alloc(chunksize, true);
- if (chunk == NULL)
- return (NULL);
-#ifdef MALLOC_STATS
- arena->stats.mapped += chunksize;
-#endif
-
- chunk->arena = arena;
-
- /*
- * Claim that no pages are in use, since the header is merely
- * overhead.
- */
- chunk->ndirty = 0;
-
- /*
- * Initialize the map to contain one maximal free untouched run.
- */
- for (i = 0; i < arena_chunk_header_npages; i++)
- chunk->map[i].bits = 0;
- chunk->map[i].bits = arena_maxclass | CHUNK_MAP_ZEROED;
- for (i++; i < chunk_npages-1; i++) {
- chunk->map[i].bits = CHUNK_MAP_ZEROED;
- }
- chunk->map[chunk_npages-1].bits = arena_maxclass |
- CHUNK_MAP_ZEROED;
- }
-
- /* Insert the run into the runs_avail tree. */
- arena_avail_tree_insert(&arena->runs_avail,
- &chunk->map[arena_chunk_header_npages]);
-
- return (chunk);
-}
-
-static void
-arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
-{
-
- if (arena->spare != NULL) {
- if (arena->spare->ndirty > 0) {
- arena_chunk_tree_dirty_remove(
- &chunk->arena->chunks_dirty, arena->spare);
- arena->ndirty -= arena->spare->ndirty;
- }
- chunk_dealloc((void *)arena->spare, chunksize);
-#ifdef MALLOC_STATS
- arena->stats.mapped -= chunksize;
-#endif
- }
-
- /*
- * Remove run from runs_avail, regardless of whether this chunk
- * will be cached, so that the arena does not use it. Dirty page
- * flushing only uses the chunks_dirty tree, so leaving this chunk in
- * the chunks_* trees is sufficient for that purpose.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[arena_chunk_header_npages]);
-
- arena->spare = chunk;
-}
-
-static arena_run_t *
-arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
-{
- arena_chunk_t *chunk;
- arena_run_t *run;
- arena_chunk_map_t *mapelm, key;
-
- assert(size <= arena_maxclass);
- assert((size & pagesize_mask) == 0);
-
- /* Search the arena's chunks for the lowest best fit. */
- key.bits = size | CHUNK_MAP_KEY;
- mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
- if (mapelm != NULL) {
- arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
- size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
- / sizeof(arena_chunk_map_t);
-
- run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
- << pagesize_2pow));
- arena_run_split(arena, run, size, large, zero);
- return (run);
- }
-
- /*
- * No usable runs. Create a new chunk from which to allocate the run.
- */
- chunk = arena_chunk_alloc(arena);
- if (chunk == NULL)
- return (NULL);
- run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
- pagesize_2pow));
- /* Update page map. */
- arena_run_split(arena, run, size, large, zero);
- return (run);
-}
-
-static void
-arena_purge(arena_t *arena)
-{
- arena_chunk_t *chunk;
- size_t i, npages;
-#ifdef MALLOC_DEBUG
- size_t ndirty = 0;
-
- rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
- chunk) {
- ndirty += chunk->ndirty;
- } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
- assert(ndirty == arena->ndirty);
-#endif
- assert(arena->ndirty > opt_dirty_max);
-
-#ifdef MALLOC_STATS
- arena->stats.npurge++;
-#endif
-
- /*
- * Iterate downward through chunks until enough dirty memory has been
- * purged. Terminate as soon as possible in order to minimize the
- * number of system calls, even if a chunk has only been partially
- * purged.
- */
- while (arena->ndirty > (opt_dirty_max >> 1)) {
- chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
- assert(chunk != NULL);
-
- for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
- assert(i >= arena_chunk_header_npages);
-
- if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
- chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
- /* Find adjacent dirty run(s). */
- for (npages = 1; i > arena_chunk_header_npages
- && (chunk->map[i - 1].bits &
- CHUNK_MAP_DIRTY); npages++) {
- i--;
- chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
- }
- chunk->ndirty -= npages;
- arena->ndirty -= npages;
-
- madvise((void *)((uintptr_t)chunk + (i <<
- pagesize_2pow)), (npages << pagesize_2pow),
- MADV_FREE);
-#ifdef MALLOC_STATS
- arena->stats.nmadvise++;
- arena->stats.purged += npages;
-#endif
- if (arena->ndirty <= (opt_dirty_max >> 1))
- break;
- }
- }
-
- if (chunk->ndirty == 0) {
- arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
- chunk);
- }
- }
-}
-
-static void
-arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
-{
- arena_chunk_t *chunk;
- size_t size, run_ind, run_pages;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
- run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
- >> pagesize_2pow);
- assert(run_ind >= arena_chunk_header_npages);
- assert(run_ind < chunk_npages);
- if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
- size = chunk->map[run_ind].bits & ~pagesize_mask;
- else
- size = run->bin->run_size;
- run_pages = (size >> pagesize_2pow);
-
- /* Mark pages as unallocated in the chunk map. */
- if (dirty) {
- size_t i;
-
- for (i = 0; i < run_pages; i++) {
- assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
- == 0);
- chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
- }
-
- if (chunk->ndirty == 0) {
- arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
- chunk);
- }
- chunk->ndirty += run_pages;
- arena->ndirty += run_pages;
- } else {
- size_t i;
-
- for (i = 0; i < run_pages; i++) {
- chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED);
- }
- }
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-
- /* Try to coalesce forward. */
- if (run_ind + run_pages < chunk_npages &&
- (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
- size_t nrun_size = chunk->map[run_ind+run_pages].bits &
- ~pagesize_mask;
-
- /*
- * Remove successor from runs_avail; the coalesced run is
- * inserted later.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[run_ind+run_pages]);
-
- size += nrun_size;
- run_pages = size >> pagesize_2pow;
-
- assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
- == nrun_size);
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
- }
-
- /* Try to coalesce backward. */
- if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
- CHUNK_MAP_ALLOCATED) == 0) {
- size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
-
- run_ind -= prun_size >> pagesize_2pow;
-
- /*
- * Remove predecessor from runs_avail; the coalesced run is
- * inserted later.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[run_ind]);
-
- size += prun_size;
- run_pages = size >> pagesize_2pow;
-
- assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
- prun_size);
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
- }
-
- /* Insert into runs_avail, now that coalescing is complete. */
- arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
-
- /* Deallocate chunk if it is now completely unused. */
- if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
- CHUNK_MAP_ALLOCATED)) == arena_maxclass)
- arena_chunk_dealloc(arena, chunk);
-
- /* Enforce opt_dirty_max. */
- if (arena->ndirty > opt_dirty_max)
- arena_purge(arena);
-}
-
-static void
-arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
- size_t oldsize, size_t newsize)
-{
- size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
- size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
-
- assert(oldsize > newsize);
-
- /*
- * Update the chunk map so that arena_run_dalloc() can treat the
- * leading run as separately allocated.
- */
- chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
-
- arena_run_dalloc(arena, run, false);
-}
-
-static void
-arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
- size_t oldsize, size_t newsize, bool dirty)
-{
- size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
- size_t npages = newsize >> pagesize_2pow;
-
- assert(oldsize > newsize);
-
- /*
- * Update the chunk map so that arena_run_dalloc() can treat the
- * trailing run as separately allocated.
- */
- chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
- | CHUNK_MAP_ALLOCATED;
-
- arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
- dirty);
-}
-
-static arena_run_t *
-arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
-{
- arena_chunk_map_t *mapelm;
- arena_run_t *run;
- unsigned i, remainder;
-
- /* Look for a usable run. */
- mapelm = arena_run_tree_first(&bin->runs);
- if (mapelm != NULL) {
- /* run is guaranteed to have available space. */
- arena_run_tree_remove(&bin->runs, mapelm);
- run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-#ifdef MALLOC_STATS
- bin->stats.reruns++;
-#endif
- return (run);
- }
- /* No existing runs have any space available. */
-
- /* Allocate a new run. */
- run = arena_run_alloc(arena, bin->run_size, false, false);
- if (run == NULL)
- return (NULL);
-
- /* Initialize run internals. */
- run->bin = bin;
-
- for (i = 0; i < bin->regs_mask_nelms - 1; i++)
- run->regs_mask[i] = UINT_MAX;
- remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
- if (remainder == 0)
- run->regs_mask[i] = UINT_MAX;
- else {
- /* The last element has spare bits that need to be unset. */
- run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
- - remainder));
- }
-
- run->regs_minelm = 0;
-
- run->nfree = bin->nregs;
-#ifdef MALLOC_DEBUG
- run->magic = ARENA_RUN_MAGIC;
-#endif
-
-#ifdef MALLOC_STATS
- bin->stats.nruns++;
- bin->stats.curruns++;
- if (bin->stats.curruns > bin->stats.highruns)
- bin->stats.highruns = bin->stats.curruns;
-#endif
- return (run);
-}
-
-/* bin->runcur must have space available before this function is called. */
-static inline void *
-arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
-{
- void *ret;
-
- assert(run->magic == ARENA_RUN_MAGIC);
- assert(run->nfree > 0);
-
- ret = arena_run_reg_alloc(run, bin);
- assert(ret != NULL);
- run->nfree--;
-
- return (ret);
-}
-
-/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
-static void *
-arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
-{
-
- bin->runcur = arena_bin_nonfull_run_get(arena, bin);
- if (bin->runcur == NULL)
- return (NULL);
- assert(bin->runcur->magic == ARENA_RUN_MAGIC);
- assert(bin->runcur->nfree > 0);
-
- return (arena_bin_malloc_easy(arena, bin, bin->runcur));
-}
-
-/*
- * Calculate bin->run_size such that it meets the following constraints:
- *
- * *) bin->run_size >= min_run_size
- * *) bin->run_size <= arena_maxclass
- * *) bin->run_size <= RUN_MAX_SMALL
- * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
- *
- * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
- * also calculated here, since these settings are all interdependent.
- */
-static size_t
-arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
-{
- size_t try_run_size, good_run_size;
- unsigned good_nregs, good_mask_nelms, good_reg0_offset;
- unsigned try_nregs, try_mask_nelms, try_reg0_offset;
-
- assert(min_run_size >= pagesize);
- assert(min_run_size <= arena_maxclass);
- assert(min_run_size <= RUN_MAX_SMALL);
-
- /*
- * Calculate known-valid settings before entering the run_size
- * expansion loop, so that the first part of the loop always copies
- * valid settings.
- *
- * The do..while loop iteratively reduces the number of regions until
- * the run header and the regions no longer overlap. A closed formula
- * would be quite messy, since there is an interdependency between the
- * header's mask length and the number of regions.
- */
- try_run_size = min_run_size;
- try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
- + 1; /* Counter-act try_nregs-- in loop. */
- do {
- try_nregs--;
- try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
- ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
- try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
- } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
- > try_reg0_offset);
-
- /* run_size expansion loop. */
- do {
- /*
- * Copy valid settings before trying more aggressive settings.
- */
- good_run_size = try_run_size;
- good_nregs = try_nregs;
- good_mask_nelms = try_mask_nelms;
- good_reg0_offset = try_reg0_offset;
-
- /* Try more aggressive settings. */
- try_run_size += pagesize;
- try_nregs = ((try_run_size - sizeof(arena_run_t)) /
- bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
- do {
- try_nregs--;
- try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
- ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
- 1 : 0);
- try_reg0_offset = try_run_size - (try_nregs *
- bin->reg_size);
- } while (sizeof(arena_run_t) + (sizeof(unsigned) *
- (try_mask_nelms - 1)) > try_reg0_offset);
- } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
- && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
- && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
-
- assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
- <= good_reg0_offset);
- assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
-
- /* Copy final settings. */
- bin->run_size = good_run_size;
- bin->nregs = good_nregs;
- bin->regs_mask_nelms = good_mask_nelms;
- bin->reg0_offset = good_reg0_offset;
-
- return (good_run_size);
-}
-
-#ifdef MALLOC_BALANCE
-static inline void
-arena_lock_balance(arena_t *arena)
-{
- unsigned contention;
-
- contention = malloc_spin_lock(&arena->lock);
- if (narenas > 1) {
- /*
- * Calculate the exponentially averaged contention for this
- * arena. Due to integer math always rounding down, this value
- * decays somewhat faster than normal.
- */
- arena->contention = (((uint64_t)arena->contention
- * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
- + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
- if (arena->contention >= opt_balance_threshold)
- arena_lock_balance_hard(arena);
- }
-}
-
-static void
-arena_lock_balance_hard(arena_t *arena)
-{
- uint32_t ind;
-
- arena->contention = 0;
-#ifdef MALLOC_STATS
- arena->stats.nbalance++;
-#endif
- ind = PRN(balance, narenas_2pow);
- if (arenas[ind] != NULL)
- arenas_map = arenas[ind];
- else {
- malloc_spin_lock(&arenas_lock);
- if (arenas[ind] != NULL)
- arenas_map = arenas[ind];
- else
- arenas_map = arenas_extend(ind);
- malloc_spin_unlock(&arenas_lock);
- }
-}
-#endif
-
-#ifdef MALLOC_MAG
-static inline void *
-mag_alloc(mag_t *mag)
-{
-
- if (mag->nrounds == 0)
- return (NULL);
- mag->nrounds--;
-
- return (mag->rounds[mag->nrounds]);
-}
-
-static void
-mag_load(mag_t *mag)
-{
- arena_t *arena;
- arena_bin_t *bin;
- arena_run_t *run;
- void *round;
- size_t i;
-
- arena = choose_arena();
- bin = &arena->bins[mag->binind];
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- for (i = mag->nrounds; i < max_rounds; i++) {
- if ((run = bin->runcur) != NULL && run->nfree > 0)
- round = arena_bin_malloc_easy(arena, bin, run);
- else
- round = arena_bin_malloc_hard(arena, bin);
- if (round == NULL)
- break;
- mag->rounds[i] = round;
- }
-#ifdef MALLOC_STATS
- bin->stats.nmags++;
- arena->stats.nmalloc_small += (i - mag->nrounds);
- arena->stats.allocated_small += (i - mag->nrounds) * bin->reg_size;
-#endif
- malloc_spin_unlock(&arena->lock);
- mag->nrounds = i;
-}
-
-static inline void *
-mag_rack_alloc(mag_rack_t *rack, size_t size, bool zero)
-{
- void *ret;
- bin_mags_t *bin_mags;
- mag_t *mag;
- size_t binind;
-
- binind = size2bin[size];
- assert(binind < nbins);
- bin_mags = &rack->bin_mags[binind];
-
- mag = bin_mags->curmag;
- if (mag == NULL) {
- /* Create an initial magazine for this size class. */
- assert(bin_mags->sparemag == NULL);
- mag = mag_create(choose_arena(), binind);
- if (mag == NULL)
- return (NULL);
- bin_mags->curmag = mag;
- mag_load(mag);
- }
-
- ret = mag_alloc(mag);
- if (ret == NULL) {
- if (bin_mags->sparemag != NULL) {
- if (bin_mags->sparemag->nrounds > 0) {
- /* Swap magazines. */
- bin_mags->curmag = bin_mags->sparemag;
- bin_mags->sparemag = mag;
- mag = bin_mags->curmag;
- } else {
- /* Reload the current magazine. */
- mag_load(mag);
- }
- } else {
- /* Create a second magazine. */
- mag = mag_create(choose_arena(), binind);
- if (mag == NULL)
- return (NULL);
- mag_load(mag);
- bin_mags->sparemag = bin_mags->curmag;
- bin_mags->curmag = mag;
- }
- ret = mag_alloc(mag);
- if (ret == NULL)
- return (NULL);
- }
-
- if (zero == false) {
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
- } else
- memset(ret, 0, size);
-
- return (ret);
-}
-#endif
-
-static inline void *
-arena_malloc_small(arena_t *arena, size_t size, bool zero)
-{
- void *ret;
- arena_bin_t *bin;
- arena_run_t *run;
- size_t binind;
-
- binind = size2bin[size];
- assert(binind < nbins);
- bin = &arena->bins[binind];
- size = bin->reg_size;
-
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- if ((run = bin->runcur) != NULL && run->nfree > 0)
- ret = arena_bin_malloc_easy(arena, bin, run);
- else
- ret = arena_bin_malloc_hard(arena, bin);
-
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-
-#ifdef MALLOC_STATS
- bin->stats.nrequests++;
- arena->stats.nmalloc_small++;
- arena->stats.allocated_small += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- if (zero == false) {
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
- } else
- memset(ret, 0, size);
-
- return (ret);
-}
-
-static void *
-arena_malloc_large(arena_t *arena, size_t size, bool zero)
-{
- void *ret;
-
- /* Large allocation. */
- size = PAGE_CEILING(size);
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- ret = (void *)arena_run_alloc(arena, size, true, zero);
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-#ifdef MALLOC_STATS
- arena->stats.nmalloc_large++;
- arena->stats.allocated_large += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- if (zero == false) {
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
- }
-
- return (ret);
-}
-
-static inline void *
-arena_malloc(arena_t *arena, size_t size, bool zero)
-{
-
- assert(arena != NULL);
- assert(arena->magic == ARENA_MAGIC);
- assert(size != 0);
- assert(QUANTUM_CEILING(size) <= arena_maxclass);
-
- if (size <= bin_maxclass) {
-#ifdef MALLOC_MAG
- if (__isthreaded && opt_mag) {
- mag_rack_t *rack = mag_rack;
- if (rack == NULL) {
- rack = mag_rack_create(arena);
- if (rack == NULL)
- return (NULL);
- mag_rack = rack;
- }
- return (mag_rack_alloc(rack, size, zero));
- } else
-#endif
- return (arena_malloc_small(arena, size, zero));
- } else
- return (arena_malloc_large(arena, size, zero));
-}
-
-static inline void *
-imalloc(size_t size)
-{
-
- assert(size != 0);
-
- if (size <= arena_maxclass)
- return (arena_malloc(choose_arena(), size, false));
- else
- return (huge_malloc(size, false));
-}
-
-static inline void *
-icalloc(size_t size)
-{
-
- if (size <= arena_maxclass)
- return (arena_malloc(choose_arena(), size, true));
- else
- return (huge_malloc(size, true));
-}
-
-/* Only handles large allocations that require more than page alignment. */
-static void *
-arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
-{
- void *ret;
- size_t offset;
- arena_chunk_t *chunk;
-
- assert((size & pagesize_mask) == 0);
- assert((alignment & pagesize_mask) == 0);
-
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
-
- offset = (uintptr_t)ret & (alignment - 1);
- assert((offset & pagesize_mask) == 0);
- assert(offset < alloc_size);
- if (offset == 0)
- arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
- else {
- size_t leadsize, trailsize;
-
- leadsize = alignment - offset;
- if (leadsize > 0) {
- arena_run_trim_head(arena, chunk, ret, alloc_size,
- alloc_size - leadsize);
- ret = (void *)((uintptr_t)ret + leadsize);
- }
-
- trailsize = alloc_size - leadsize - size;
- if (trailsize != 0) {
- /* Trim trailing space. */
- assert(trailsize < alloc_size);
- arena_run_trim_tail(arena, chunk, ret, size + trailsize,
- size, false);
- }
- }
-
-#ifdef MALLOC_STATS
- arena->stats.nmalloc_large++;
- arena->stats.allocated_large += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
- return (ret);
-}
-
-static inline void *
-ipalloc(size_t alignment, size_t size)
-{
- void *ret;
- size_t ceil_size;
-
- /*
- * Round size up to the nearest multiple of alignment.
- *
- * This done, we can take advantage of the fact that for each small
- * size class, every object is aligned at the smallest power of two
- * that is non-zero in the base two representation of the size. For
- * example:
- *
- * Size | Base 2 | Minimum alignment
- * -----+----------+------------------
- * 96 | 1100000 | 32
- * 144 | 10100000 | 32
- * 192 | 11000000 | 64
- *
- * Depending on runtime settings, it is possible that arena_malloc()
- * will further round up to a power of two, but that never causes
- * correctness issues.
- */
- ceil_size = (size + (alignment - 1)) & (-alignment);
- /*
- * (ceil_size < size) protects against the combination of maximal
- * alignment and size greater than maximal alignment.
- */
- if (ceil_size < size) {
- /* size_t overflow. */
- return (NULL);
- }
-
- if (ceil_size <= pagesize || (alignment <= pagesize
- && ceil_size <= arena_maxclass))
- ret = arena_malloc(choose_arena(), ceil_size, false);
- else {
- size_t run_size;
-
- /*
- * We can't achieve subpage alignment, so round up alignment
- * permanently; it makes later calculations simpler.
- */
- alignment = PAGE_CEILING(alignment);
- ceil_size = PAGE_CEILING(size);
- /*
- * (ceil_size < size) protects against very large sizes within
- * pagesize of SIZE_T_MAX.
- *
- * (ceil_size + alignment < ceil_size) protects against the
- * combination of maximal alignment and ceil_size large enough
- * to cause overflow. This is similar to the first overflow
- * check above, but it needs to be repeated due to the new
- * ceil_size value, which may now be *equal* to maximal
- * alignment, whereas before we only detected overflow if the
- * original size was *greater* than maximal alignment.
- */
- if (ceil_size < size || ceil_size + alignment < ceil_size) {
- /* size_t overflow. */
- return (NULL);
- }
-
- /*
- * Calculate the size of the over-size run that arena_palloc()
- * would need to allocate in order to guarantee the alignment.
- */
- if (ceil_size >= alignment)
- run_size = ceil_size + alignment - pagesize;
- else {
- /*
- * It is possible that (alignment << 1) will cause
- * overflow, but it doesn't matter because we also
- * subtract pagesize, which in the case of overflow
- * leaves us with a very large run_size. That causes
- * the first conditional below to fail, which means
- * that the bogus run_size value never gets used for
- * anything important.
- */
- run_size = (alignment << 1) - pagesize;
- }
-
- if (run_size <= arena_maxclass) {
- ret = arena_palloc(choose_arena(), alignment, ceil_size,
- run_size);
- } else if (alignment <= chunksize)
- ret = huge_malloc(ceil_size, false);
- else
- ret = huge_palloc(alignment, ceil_size);
- }
-
- assert(((uintptr_t)ret & (alignment - 1)) == 0);
- return (ret);
-}
-
-/* Return the size of the allocation pointed to by ptr. */
-static size_t
-arena_salloc(const void *ptr)
-{
- size_t ret;
- arena_chunk_t *chunk;
- size_t pageind, mapbits;
-
- assert(ptr != NULL);
- assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
- mapbits = chunk->map[pageind].bits;
- assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
- if ((mapbits & CHUNK_MAP_LARGE) == 0) {
- arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
- assert(run->magic == ARENA_RUN_MAGIC);
- ret = run->bin->reg_size;
- } else {
- ret = mapbits & ~pagesize_mask;
- assert(ret != 0);
- }
-
- return (ret);
-}
-
-static inline size_t
-isalloc(const void *ptr)
-{
- size_t ret;
- arena_chunk_t *chunk;
-
- assert(ptr != NULL);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- if (chunk != ptr) {
- /* Region. */
- assert(chunk->arena->magic == ARENA_MAGIC);
-
- ret = arena_salloc(ptr);
- } else {
- extent_node_t *node, key;
-
- /* Chunk (huge allocation). */
-
- malloc_mutex_lock(&huge_mtx);
-
- /* Extract from tree of huge allocations. */
- key.addr = __DECONST(void *, ptr);
- node = extent_tree_ad_search(&huge, &key);
- assert(node != NULL);
-
- ret = node->size;
-
- malloc_mutex_unlock(&huge_mtx);
- }
-
- return (ret);
-}
-
-static inline void
-arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- arena_chunk_map_t *mapelm)
-{
- arena_run_t *run;
- arena_bin_t *bin;
- size_t size;
-
- run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
- assert(run->magic == ARENA_RUN_MAGIC);
- bin = run->bin;
- size = bin->reg_size;
-
- if (opt_junk)
- memset(ptr, 0x5a, size);
-
- arena_run_reg_dalloc(run, bin, ptr, size);
- run->nfree++;
-
- if (run->nfree == bin->nregs) {
- /* Deallocate run. */
- if (run == bin->runcur)
- bin->runcur = NULL;
- else if (bin->nregs != 1) {
- size_t run_pageind = (((uintptr_t)run -
- (uintptr_t)chunk)) >> pagesize_2pow;
- arena_chunk_map_t *run_mapelm =
- &chunk->map[run_pageind];
- /*
- * This block's conditional is necessary because if the
- * run only contains one region, then it never gets
- * inserted into the non-full runs tree.
- */
- arena_run_tree_remove(&bin->runs, run_mapelm);
- }
-#ifdef MALLOC_DEBUG
- run->magic = 0;
-#endif
- arena_run_dalloc(arena, run, true);
-#ifdef MALLOC_STATS
- bin->stats.curruns--;
-#endif
- } else if (run->nfree == 1 && run != bin->runcur) {
- /*
- * Make sure that bin->runcur always refers to the lowest
- * non-full run, if one exists.
- */
- if (bin->runcur == NULL)
- bin->runcur = run;
- else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
- /* Switch runcur. */
- if (bin->runcur->nfree > 0) {
- arena_chunk_t *runcur_chunk =
- CHUNK_ADDR2BASE(bin->runcur);
- size_t runcur_pageind =
- (((uintptr_t)bin->runcur -
- (uintptr_t)runcur_chunk)) >> pagesize_2pow;
- arena_chunk_map_t *runcur_mapelm =
- &runcur_chunk->map[runcur_pageind];
-
- /* Insert runcur. */
- arena_run_tree_insert(&bin->runs,
- runcur_mapelm);
- }
- bin->runcur = run;
- } else {
- size_t run_pageind = (((uintptr_t)run -
- (uintptr_t)chunk)) >> pagesize_2pow;
- arena_chunk_map_t *run_mapelm =
- &chunk->map[run_pageind];
-
- assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
- NULL);
- arena_run_tree_insert(&bin->runs, run_mapelm);
- }
- }
-#ifdef MALLOC_STATS
- arena->stats.allocated_small -= size;
- arena->stats.ndalloc_small++;
-#endif
-}
-
-#ifdef MALLOC_MAG
-static void
-mag_unload(mag_t *mag)
-{
- arena_chunk_t *chunk;
- arena_t *arena;
- void *round;
- size_t i, ndeferred, nrounds;
-
- for (ndeferred = mag->nrounds; ndeferred > 0;) {
- nrounds = ndeferred;
- /* Lock the arena associated with the first round. */
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mag->rounds[0]);
- arena = chunk->arena;
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- /* Deallocate every round that belongs to the locked arena. */
- for (i = ndeferred = 0; i < nrounds; i++) {
- round = mag->rounds[i];
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(round);
- if (chunk->arena == arena) {
- size_t pageind = (((uintptr_t)round -
- (uintptr_t)chunk) >> pagesize_2pow);
- arena_chunk_map_t *mapelm =
- &chunk->map[pageind];
- arena_dalloc_small(arena, chunk, round, mapelm);
- } else {
- /*
- * This round was allocated via a different
- * arena than the one that is currently locked.
- * Stash the round, so that it can be handled
- * in a future pass.
- */
- mag->rounds[ndeferred] = round;
- ndeferred++;
- }
- }
- malloc_spin_unlock(&arena->lock);
- }
-
- mag->nrounds = 0;
-}
-
-static inline void
-mag_rack_dalloc(mag_rack_t *rack, void *ptr)
-{
- arena_t *arena;
- arena_chunk_t *chunk;
- arena_run_t *run;
- arena_bin_t *bin;
- bin_mags_t *bin_mags;
- mag_t *mag;
- size_t pageind, binind;
- arena_chunk_map_t *mapelm;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- arena = chunk->arena;
- pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
- run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
- assert(run->magic == ARENA_RUN_MAGIC);
- bin = run->bin;
- binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
- sizeof(arena_bin_t);
- assert(binind < nbins);
-
- if (opt_junk)
- memset(ptr, 0x5a, arena->bins[binind].reg_size);
-
- bin_mags = &rack->bin_mags[binind];
- mag = bin_mags->curmag;
- if (mag == NULL) {
- /* Create an initial magazine for this size class. */
- assert(bin_mags->sparemag == NULL);
- mag = mag_create(choose_arena(), binind);
- if (mag == NULL) {
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, ptr, mapelm);
- malloc_spin_unlock(&arena->lock);
- return;
- }
- bin_mags->curmag = mag;
- }
-
- if (mag->nrounds == max_rounds) {
- if (bin_mags->sparemag != NULL) {
- if (bin_mags->sparemag->nrounds < max_rounds) {
- /* Swap magazines. */
- bin_mags->curmag = bin_mags->sparemag;
- bin_mags->sparemag = mag;
- mag = bin_mags->curmag;
- } else {
- /* Unload the current magazine. */
- mag_unload(mag);
- }
- } else {
- /* Create a second magazine. */
- mag = mag_create(choose_arena(), binind);
- if (mag == NULL) {
- mag = rack->bin_mags[binind].curmag;
- mag_unload(mag);
- } else {
- bin_mags->sparemag = bin_mags->curmag;
- bin_mags->curmag = mag;
- }
- }
- assert(mag->nrounds < max_rounds);
- }
- mag->rounds[mag->nrounds] = ptr;
- mag->nrounds++;
-}
-#endif
-
-static void
-arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
- /* Large allocation. */
- malloc_spin_lock(&arena->lock);
-
-#ifndef MALLOC_STATS
- if (opt_junk)
-#endif
- {
- size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
- pagesize_2pow;
- size_t size = chunk->map[pageind].bits & ~pagesize_mask;
-
-#ifdef MALLOC_STATS
- if (opt_junk)
-#endif
- memset(ptr, 0x5a, size);
-#ifdef MALLOC_STATS
- arena->stats.allocated_large -= size;
-#endif
- }
-#ifdef MALLOC_STATS
- arena->stats.ndalloc_large++;
-#endif
-
- arena_run_dalloc(arena, (arena_run_t *)ptr, true);
- malloc_spin_unlock(&arena->lock);
-}
-
-static inline void
-arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
- size_t pageind;
- arena_chunk_map_t *mapelm;
-
- assert(arena != NULL);
- assert(arena->magic == ARENA_MAGIC);
- assert(chunk->arena == arena);
- assert(ptr != NULL);
- assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
- pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
- assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
- if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
- /* Small allocation. */
-#ifdef MALLOC_MAG
- if (__isthreaded && opt_mag) {
- mag_rack_t *rack = mag_rack;
- if (rack == NULL) {
- rack = mag_rack_create(arena);
- if (rack == NULL) {
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, ptr,
- mapelm);
- malloc_spin_unlock(&arena->lock);
- }
- mag_rack = rack;
- }
- mag_rack_dalloc(rack, ptr);
- } else {
-#endif
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, ptr, mapelm);
- malloc_spin_unlock(&arena->lock);
-#ifdef MALLOC_MAG
- }
-#endif
- } else
- arena_dalloc_large(arena, chunk, ptr);
-}
-
-static inline void
-idalloc(void *ptr)
-{
- arena_chunk_t *chunk;
-
- assert(ptr != NULL);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- if (chunk != ptr)
- arena_dalloc(chunk->arena, chunk, ptr);
- else
- huge_dalloc(ptr);
-}
-
-static void
-arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- size_t size, size_t oldsize)
-{
-
- assert(size < oldsize);
-
- /*
- * Shrink the run, and make trailing pages available for other
- * allocations.
- */
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
- true);
-#ifdef MALLOC_STATS
- arena->stats.allocated_large -= oldsize - size;
-#endif
- malloc_spin_unlock(&arena->lock);
-}
-
-static bool
-arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- size_t size, size_t oldsize)
-{
- size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
- size_t npages = oldsize >> pagesize_2pow;
-
- assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
-
- /* Try to extend the run. */
- assert(size > oldsize);
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
- & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
- ~pagesize_mask) >= size - oldsize) {
- /*
- * The next run is available and sufficiently large. Split the
- * following run, then merge the first part with the existing
- * allocation.
- */
- arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
- ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
- false);
-
- chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
-
-#ifdef MALLOC_STATS
- arena->stats.allocated_large += size - oldsize;
-#endif
- malloc_spin_unlock(&arena->lock);
- return (false);
- }
- malloc_spin_unlock(&arena->lock);
-
- return (true);
-}
-
-/*
- * Try to resize a large allocation, in order to avoid copying. This will
- * always fail if growing an object, and the following run is already in use.
- */
-static bool
-arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
-{
- size_t psize;
-
- psize = PAGE_CEILING(size);
- if (psize == oldsize) {
- /* Same size class. */
- if (opt_junk && size < oldsize) {
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
- size);
- }
- return (false);
- } else {
- arena_chunk_t *chunk;
- arena_t *arena;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- arena = chunk->arena;
- assert(arena->magic == ARENA_MAGIC);
-
- if (psize < oldsize) {
- /* Fill before shrinking in order avoid a race. */
- if (opt_junk) {
- memset((void *)((uintptr_t)ptr + size), 0x5a,
- oldsize - size);
- }
- arena_ralloc_large_shrink(arena, chunk, ptr, psize,
- oldsize);
- return (false);
- } else {
- bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
- psize, oldsize);
- if (ret == false && opt_zero) {
- memset((void *)((uintptr_t)ptr + oldsize), 0,
- size - oldsize);
- }
- return (ret);
- }
- }
-}
-
-static void *
-arena_ralloc(void *ptr, size_t size, size_t oldsize)
-{
- void *ret;
- size_t copysize;
-
- /* Try to avoid moving the allocation. */
- if (size <= bin_maxclass) {
- if (oldsize <= bin_maxclass && size2bin[size] ==
- size2bin[oldsize])
- goto IN_PLACE;
- } else {
- if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
- assert(size > bin_maxclass);
- if (arena_ralloc_large(ptr, size, oldsize) == false)
- return (ptr);
- }
- }
-
- /*
- * If we get here, then size and oldsize are different enough that we
- * need to move the object. In that case, fall back to allocating new
- * space and copying.
- */
- ret = arena_malloc(choose_arena(), size, false);
- if (ret == NULL)
- return (NULL);
-
- /* Junk/zero-filling were already done by arena_malloc(). */
- copysize = (size < oldsize) ? size : oldsize;
- memcpy(ret, ptr, copysize);
- idalloc(ptr);
- return (ret);
-IN_PLACE:
- if (opt_junk && size < oldsize)
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
- else if (opt_zero && size > oldsize)
- memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
- return (ptr);
-}
-
-static inline void *
-iralloc(void *ptr, size_t size)
-{
- size_t oldsize;
-
- assert(ptr != NULL);
- assert(size != 0);
-
- oldsize = isalloc(ptr);
-
- if (size <= arena_maxclass)
- return (arena_ralloc(ptr, size, oldsize));
- else
- return (huge_ralloc(ptr, size, oldsize));
-}
-
-static bool
-arena_new(arena_t *arena)
-{
- unsigned i;
- arena_bin_t *bin;
- size_t prev_run_size;
-
- if (malloc_spin_init(&arena->lock))
- return (true);
-
-#ifdef MALLOC_STATS
- memset(&arena->stats, 0, sizeof(arena_stats_t));
-#endif
-
- /* Initialize chunks. */
- arena_chunk_tree_dirty_new(&arena->chunks_dirty);
- arena->spare = NULL;
-
- arena->ndirty = 0;
-
- arena_avail_tree_new(&arena->runs_avail);
-
-#ifdef MALLOC_BALANCE
- arena->contention = 0;
-#endif
-
- /* Initialize bins. */
- prev_run_size = pagesize;
-
- i = 0;
-#ifdef MALLOC_TINY
- /* (2^n)-spaced tiny bins. */
- for (; i < ntbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = (1U << (TINY_MIN_2POW + i));
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-#endif
-
- /* Quantum-spaced bins. */
- for (; i < ntbins + nqbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = (i - ntbins + 1) << QUANTUM_2POW;
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
- /* Cacheline-spaced bins. */
- for (; i < ntbins + nqbins + ncbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
- CACHELINE_2POW);
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
- /* Subpage-spaced bins. */
- for (; i < nbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
- << SUBPAGE_2POW);
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
-#ifdef MALLOC_DEBUG
- arena->magic = ARENA_MAGIC;
-#endif
-
- return (false);
-}
-
-/* Create a new arena and insert it into the arenas array at index ind. */
-static arena_t *
-arenas_extend(unsigned ind)
-{
- arena_t *ret;
-
- /* Allocate enough space for trailing bins. */
- ret = (arena_t *)base_alloc(sizeof(arena_t)
- + (sizeof(arena_bin_t) * (nbins - 1)));
- if (ret != NULL && arena_new(ret) == false) {
- arenas[ind] = ret;
- return (ret);
- }
- /* Only reached if there is an OOM error. */
-
- /*
- * OOM here is quite inconvenient to propagate, since dealing with it
- * would require a check for failure in the fast path. Instead, punt
- * by using arenas[0]. In practice, this is an extremely unlikely
- * failure.
- */
- _malloc_message(_getprogname(),
- ": (malloc) Error initializing arena\n", "", "");
- if (opt_abort)
- abort();
-
- return (arenas[0]);
-}
-
-#ifdef MALLOC_MAG
-static mag_t *
-mag_create(arena_t *arena, size_t binind)
-{
- mag_t *ret;
-
- if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
- bin_maxclass) {
- ret = arena_malloc_small(arena, sizeof(mag_t) + (sizeof(void *)
- * (max_rounds - 1)), false);
- } else {
- ret = imalloc(sizeof(mag_t) + (sizeof(void *) * (max_rounds -
- 1)));
- }
- if (ret == NULL)
- return (NULL);
- ret->binind = binind;
- ret->nrounds = 0;
-
- return (ret);
-}
-
-static void
-mag_destroy(mag_t *mag)
-{
- arena_t *arena;
- arena_chunk_t *chunk;
- size_t pageind;
- arena_chunk_map_t *mapelm;
-
- chunk = CHUNK_ADDR2BASE(mag);
- arena = chunk->arena;
- pageind = (((uintptr_t)mag - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
-
- assert(mag->nrounds == 0);
- if (sizeof(mag_t) + (sizeof(void *) * (max_rounds - 1)) <=
- bin_maxclass) {
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, mag, mapelm);
- malloc_spin_unlock(&arena->lock);
- } else
- idalloc(mag);
-}
-
-static mag_rack_t *
-mag_rack_create(arena_t *arena)
-{
-
- assert(sizeof(mag_rack_t) + (sizeof(bin_mags_t *) * (nbins - 1)) <=
- bin_maxclass);
- return (arena_malloc_small(arena, sizeof(mag_rack_t) +
- (sizeof(bin_mags_t) * (nbins - 1)), true));
-}
-
-static void
-mag_rack_destroy(mag_rack_t *rack)
-{
- arena_t *arena;
- arena_chunk_t *chunk;
- bin_mags_t *bin_mags;
- size_t i, pageind;
- arena_chunk_map_t *mapelm;
-
- for (i = 0; i < nbins; i++) {
- bin_mags = &rack->bin_mags[i];
- if (bin_mags->curmag != NULL) {
- assert(bin_mags->curmag->binind == i);
- mag_unload(bin_mags->curmag);
- mag_destroy(bin_mags->curmag);
- }
- if (bin_mags->sparemag != NULL) {
- assert(bin_mags->sparemag->binind == i);
- mag_unload(bin_mags->sparemag);
- mag_destroy(bin_mags->sparemag);
- }
- }
-
- chunk = CHUNK_ADDR2BASE(rack);
- arena = chunk->arena;
- pageind = (((uintptr_t)rack - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
-
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, rack, mapelm);
- malloc_spin_unlock(&arena->lock);
-}
-#endif
-
-/*
- * End arena.
- */
-/******************************************************************************/
-/*
- * Begin general internal functions.
- */
-
-static void *
-huge_malloc(size_t size, bool zero)
-{
- void *ret;
- size_t csize;
- extent_node_t *node;
-
- /* Allocate one or more contiguous chunks for this request. */
-
- csize = CHUNK_CEILING(size);
- if (csize == 0) {
- /* size is large enough to cause size_t wrap-around. */
- return (NULL);
- }
-
- /* Allocate an extent node with which to track the chunk. */
- node = base_node_alloc();
- if (node == NULL)
- return (NULL);
-
- ret = chunk_alloc(csize, zero);
- if (ret == NULL) {
- base_node_dealloc(node);
- return (NULL);
- }
-
- /* Insert node into huge. */
- node->addr = ret;
- node->size = csize;
-
- malloc_mutex_lock(&huge_mtx);
- extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
- huge_nmalloc++;
- huge_allocated += csize;
-#endif
- malloc_mutex_unlock(&huge_mtx);
-
- if (zero == false) {
- if (opt_junk)
- memset(ret, 0xa5, csize);
- else if (opt_zero)
- memset(ret, 0, csize);
- }
-
- return (ret);
-}
-
-/* Only handles large allocations that require more than chunk alignment. */
-static void *
-huge_palloc(size_t alignment, size_t size)
-{
- void *ret;
- size_t alloc_size, chunk_size, offset;
- extent_node_t *node;
-
- /*
- * This allocation requires alignment that is even larger than chunk
- * alignment. This means that huge_malloc() isn't good enough.
- *
- * Allocate almost twice as many chunks as are demanded by the size or
- * alignment, in order to assure the alignment can be achieved, then
- * unmap leading and trailing chunks.
- */
- assert(alignment >= chunksize);
-
- chunk_size = CHUNK_CEILING(size);
-
- if (size >= alignment)
- alloc_size = chunk_size + alignment - chunksize;
- else
- alloc_size = (alignment << 1) - chunksize;
-
- /* Allocate an extent node with which to track the chunk. */
- node = base_node_alloc();
- if (node == NULL)
- return (NULL);
-
- ret = chunk_alloc(alloc_size, false);
- if (ret == NULL) {
- base_node_dealloc(node);
- return (NULL);
- }
-
- offset = (uintptr_t)ret & (alignment - 1);
- assert((offset & chunksize_mask) == 0);
- assert(offset < alloc_size);
- if (offset == 0) {
- /* Trim trailing space. */
- chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
- - chunk_size);
- } else {
- size_t trailsize;
-
- /* Trim leading space. */
- chunk_dealloc(ret, alignment - offset);
-
- ret = (void *)((uintptr_t)ret + (alignment - offset));
-
- trailsize = alloc_size - (alignment - offset) - chunk_size;
- if (trailsize != 0) {
- /* Trim trailing space. */
- assert(trailsize < alloc_size);
- chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
- trailsize);
- }
- }
-
- /* Insert node into huge. */
- node->addr = ret;
- node->size = chunk_size;
-
- malloc_mutex_lock(&huge_mtx);
- extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
- huge_nmalloc++;
- huge_allocated += chunk_size;
-#endif
- malloc_mutex_unlock(&huge_mtx);
-
- if (opt_junk)
- memset(ret, 0xa5, chunk_size);
- else if (opt_zero)
- memset(ret, 0, chunk_size);
-
- return (ret);
-}
-
-static void *
-huge_ralloc(void *ptr, size_t size, size_t oldsize)
-{
- void *ret;
- size_t copysize;
-
- /* Avoid moving the allocation if the size class would not change. */
- if (oldsize > arena_maxclass &&
- CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
- if (opt_junk && size < oldsize) {
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
- - size);
- } else if (opt_zero && size > oldsize) {
- memset((void *)((uintptr_t)ptr + oldsize), 0, size
- - oldsize);
- }
- return (ptr);
- }
-
- /*
- * If we get here, then size and oldsize are different enough that we
- * need to use a different size class. In that case, fall back to
- * allocating new space and copying.
- */
- ret = huge_malloc(size, false);
- if (ret == NULL)
- return (NULL);
-
- copysize = (size < oldsize) ? size : oldsize;
- memcpy(ret, ptr, copysize);
- idalloc(ptr);
- return (ret);
-}
-
-static void
-huge_dalloc(void *ptr)
-{
- extent_node_t *node, key;
-
- malloc_mutex_lock(&huge_mtx);
-
- /* Extract from tree of huge allocations. */
- key.addr = ptr;
- node = extent_tree_ad_search(&huge, &key);
- assert(node != NULL);
- assert(node->addr == ptr);
- extent_tree_ad_remove(&huge, node);
-
-#ifdef MALLOC_STATS
- huge_ndalloc++;
- huge_allocated -= node->size;
-#endif
-
- malloc_mutex_unlock(&huge_mtx);
-
- /* Unmap chunk. */
-#ifdef MALLOC_DSS
- if (opt_dss && opt_junk)
- memset(node->addr, 0x5a, node->size);
-#endif
- chunk_dealloc(node->addr, node->size);
-
- base_node_dealloc(node);
-}
-
-static void
-malloc_print_stats(void)
-{
-
- if (opt_print_stats) {
- char s[UMAX2S_BUFSIZE];
- _malloc_message("___ Begin malloc statistics ___\n", "", "",
- "");
- _malloc_message("Assertions ",
-#ifdef NDEBUG
- "disabled",
-#else
- "enabled",
-#endif
- "\n", "");
- _malloc_message("Boolean MALLOC_OPTIONS: ",
- opt_abort ? "A" : "a", "", "");
-#ifdef MALLOC_DSS
- _malloc_message(opt_dss ? "D" : "d", "", "", "");
-#endif
-#ifdef MALLOC_MAG
- _malloc_message(opt_mag ? "G" : "g", "", "", "");
-#endif
- _malloc_message(opt_junk ? "J" : "j", "", "", "");
-#ifdef MALLOC_DSS
- _malloc_message(opt_mmap ? "M" : "m", "", "", "");
-#endif
- _malloc_message(opt_utrace ? "PU" : "Pu",
- opt_sysv ? "V" : "v",
- opt_xmalloc ? "X" : "x",
- opt_zero ? "Z\n" : "z\n");
-
- _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
- _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
-#ifdef MALLOC_BALANCE
- _malloc_message("Arena balance threshold: ",
- umax2s(opt_balance_threshold, s), "\n", "");
-#endif
- _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
- "\n", "");
- _malloc_message("Quantum size: ", umax2s(QUANTUM, s), "\n", "");
- _malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE,
- s), "\n", "");
-#ifdef MALLOC_TINY
- _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U <<
- TINY_MIN_2POW), s), "..", "");
- _malloc_message(umax2s((qspace_min >> 1), s), "]\n", "", "");
-#endif
- _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min,
- s), "..", "");
- _malloc_message(umax2s(qspace_max, s), "]\n", "", "");
- _malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min,
- s), "..", "");
- _malloc_message(umax2s(cspace_max, s), "]\n", "", "");
- _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min,
- s), "..", "");
- _malloc_message(umax2s(sspace_max, s), "]\n", "", "");
-#ifdef MALLOC_MAG
- _malloc_message("Rounds per magazine: ", umax2s(max_rounds, s),
- "\n", "");
-#endif
- _malloc_message("Max dirty pages per arena: ",
- umax2s(opt_dirty_max, s), "\n", "");
-
- _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
- _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
-
-#ifdef MALLOC_STATS
- {
- size_t allocated, mapped;
-#ifdef MALLOC_BALANCE
- uint64_t nbalance = 0;
-#endif
- unsigned i;
- arena_t *arena;
-
- /* Calculate and print allocated/mapped stats. */
-
- /* arenas. */
- for (i = 0, allocated = 0; i < narenas; i++) {
- if (arenas[i] != NULL) {
- malloc_spin_lock(&arenas[i]->lock);
- allocated +=
- arenas[i]->stats.allocated_small;
- allocated +=
- arenas[i]->stats.allocated_large;
-#ifdef MALLOC_BALANCE
- nbalance += arenas[i]->stats.nbalance;
-#endif
- malloc_spin_unlock(&arenas[i]->lock);
- }
- }
-
- /* huge/base. */
- malloc_mutex_lock(&huge_mtx);
- allocated += huge_allocated;
- mapped = stats_chunks.curchunks * chunksize;
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_mutex_lock(&base_mtx);
- mapped += base_mapped;
- malloc_mutex_unlock(&base_mtx);
-
- malloc_printf("Allocated: %zu, mapped: %zu\n",
- allocated, mapped);
-
-#ifdef MALLOC_BALANCE
- malloc_printf("Arena balance reassignments: %llu\n",
- nbalance);
-#endif
-
- /* Print chunk stats. */
- {
- chunk_stats_t chunks_stats;
-
- malloc_mutex_lock(&huge_mtx);
- chunks_stats = stats_chunks;
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_printf("chunks: nchunks "
- "highchunks curchunks\n");
- malloc_printf(" %13llu%13lu%13lu\n",
- chunks_stats.nchunks,
- chunks_stats.highchunks,
- chunks_stats.curchunks);
- }
-
- /* Print chunk stats. */
- malloc_printf(
- "huge: nmalloc ndalloc allocated\n");
- malloc_printf(" %12llu %12llu %12zu\n",
- huge_nmalloc, huge_ndalloc, huge_allocated);
-
- /* Print stats for each arena. */
- for (i = 0; i < narenas; i++) {
- arena = arenas[i];
- if (arena != NULL) {
- malloc_printf(
- "\narenas[%u]:\n", i);
- malloc_spin_lock(&arena->lock);
- stats_print(arena);
- malloc_spin_unlock(&arena->lock);
- }
- }
- }
-#endif /* #ifdef MALLOC_STATS */
- _malloc_message("--- End malloc statistics ---\n", "", "", "");
- }
-}
-
-#ifdef MALLOC_DEBUG
-static void
-size2bin_validate(void)
-{
- size_t i, size, binind;
-
- assert(size2bin[0] == 0xffU);
- i = 1;
-# ifdef MALLOC_TINY
- /* Tiny. */
- for (; i < (1U << TINY_MIN_2POW); i++) {
- size = pow2_ceil(1U << TINY_MIN_2POW);
- binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
- assert(size2bin[i] == binind);
- }
- for (; i < qspace_min; i++) {
- size = pow2_ceil(i);
- binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
- assert(size2bin[i] == binind);
- }
-# endif
- /* Quantum-spaced. */
- for (; i <= qspace_max; i++) {
- size = QUANTUM_CEILING(i);
- binind = ntbins + (size >> QUANTUM_2POW) - 1;
- assert(size2bin[i] == binind);
- }
- /* Cacheline-spaced. */
- for (; i <= cspace_max; i++) {
- size = CACHELINE_CEILING(i);
- binind = ntbins + nqbins + ((size - cspace_min) >>
- CACHELINE_2POW);
- assert(size2bin[i] == binind);
- }
- /* Sub-page. */
- for (; i <= sspace_max; i++) {
- size = SUBPAGE_CEILING(i);
- binind = ntbins + nqbins + ncbins + ((size - sspace_min)
- >> SUBPAGE_2POW);
- assert(size2bin[i] == binind);
- }
-}
-#endif
-
-static bool
-size2bin_init(void)
-{
-
- if (opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
- || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT)
- return (size2bin_init_hard());
-
- size2bin = const_size2bin;
-#ifdef MALLOC_DEBUG
- assert(sizeof(const_size2bin) == bin_maxclass + 1);
- size2bin_validate();
-#endif
- return (false);
-}
-
-static bool
-size2bin_init_hard(void)
-{
- size_t i, size, binind;
- uint8_t *custom_size2bin;
-
- assert(opt_qspace_max_2pow != QSPACE_MAX_2POW_DEFAULT
- || opt_cspace_max_2pow != CSPACE_MAX_2POW_DEFAULT);
-
- custom_size2bin = (uint8_t *)base_alloc(bin_maxclass + 1);
- if (custom_size2bin == NULL)
- return (true);
-
- custom_size2bin[0] = 0xffU;
- i = 1;
-#ifdef MALLOC_TINY
- /* Tiny. */
- for (; i < (1U << TINY_MIN_2POW); i++) {
- size = pow2_ceil(1U << TINY_MIN_2POW);
- binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
- custom_size2bin[i] = binind;
- }
- for (; i < qspace_min; i++) {
- size = pow2_ceil(i);
- binind = ffs((int)(size >> (TINY_MIN_2POW + 1)));
- custom_size2bin[i] = binind;
- }
-#endif
- /* Quantum-spaced. */
- for (; i <= qspace_max; i++) {
- size = QUANTUM_CEILING(i);
- binind = ntbins + (size >> QUANTUM_2POW) - 1;
- custom_size2bin[i] = binind;
- }
- /* Cacheline-spaced. */
- for (; i <= cspace_max; i++) {
- size = CACHELINE_CEILING(i);
- binind = ntbins + nqbins + ((size - cspace_min) >>
- CACHELINE_2POW);
- custom_size2bin[i] = binind;
- }
- /* Sub-page. */
- for (; i <= sspace_max; i++) {
- size = SUBPAGE_CEILING(i);
- binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
- SUBPAGE_2POW);
- custom_size2bin[i] = binind;
- }
-
- size2bin = custom_size2bin;
-#ifdef MALLOC_DEBUG
- size2bin_validate();
-#endif
- return (false);
-}
-
-/*
- * FreeBSD's pthreads implementation calls malloc(3), so the malloc
- * implementation has to take pains to avoid infinite recursion during
- * initialization.
- */
-static inline bool
-malloc_init(void)
-{
-
- if (malloc_initialized == false)
- return (malloc_init_hard());
-
- return (false);
-}
-
-static bool
-malloc_init_hard(void)
-{
- unsigned i;
- int linklen;
- char buf[PATH_MAX + 1];
- const char *opts;
-
- malloc_mutex_lock(&init_lock);
- if (malloc_initialized) {
- /*
- * Another thread initialized the allocator before this one
- * acquired init_lock.
- */
- malloc_mutex_unlock(&init_lock);
- return (false);
- }
-
- /* Get number of CPUs. */
- {
- int mib[2];
- size_t len;
-
- mib[0] = CTL_HW;
- mib[1] = HW_NCPU;
- len = sizeof(ncpus);
- if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
- /* Error. */
- ncpus = 1;
- }
- }
-
- /* Get page size. */
- {
- long result;
-
- result = sysconf(_SC_PAGESIZE);
- assert(result != -1);
- pagesize = (unsigned)result;
-
- /*
- * We assume that pagesize is a power of 2 when calculating
- * pagesize_mask and pagesize_2pow.
- */
- assert(((result - 1) & result) == 0);
- pagesize_mask = result - 1;
- pagesize_2pow = ffs((int)result) - 1;
- }
-
- for (i = 0; i < 3; i++) {
- unsigned j;
-
- /* Get runtime configuration. */
- switch (i) {
- case 0:
- if ((linklen = readlink("/etc/malloc.conf", buf,
- sizeof(buf) - 1)) != -1) {
- /*
- * Use the contents of the "/etc/malloc.conf"
- * symbolic link's name.
- */
- buf[linklen] = '\0';
- opts = buf;
- } else {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- case 1:
- if (issetugid() == 0 && (opts =
- getenv("MALLOC_OPTIONS")) != NULL) {
- /*
- * Do nothing; opts is already initialized to
- * the value of the MALLOC_OPTIONS environment
- * variable.
- */
- } else {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- case 2:
- if (_malloc_options != NULL) {
- /*
- * Use options that were compiled into the
- * program.
- */
- opts = _malloc_options;
- } else {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- default:
- /* NOTREACHED */
- assert(false);
- }
-
- for (j = 0; opts[j] != '\0'; j++) {
- unsigned k, nreps;
- bool nseen;
-
- /* Parse repetition count, if any. */
- for (nreps = 0, nseen = false;; j++, nseen = true) {
- switch (opts[j]) {
- case '0': case '1': case '2': case '3':
- case '4': case '5': case '6': case '7':
- case '8': case '9':
- nreps *= 10;
- nreps += opts[j] - '0';
- break;
- default:
- goto MALLOC_OUT;
- }
- }
-MALLOC_OUT:
- if (nseen == false)
- nreps = 1;
-
- for (k = 0; k < nreps; k++) {
- switch (opts[j]) {
- case 'a':
- opt_abort = false;
- break;
- case 'A':
- opt_abort = true;
- break;
- case 'b':
-#ifdef MALLOC_BALANCE
- opt_balance_threshold >>= 1;
-#endif
- break;
- case 'B':
-#ifdef MALLOC_BALANCE
- if (opt_balance_threshold == 0)
- opt_balance_threshold = 1;
- else if ((opt_balance_threshold << 1)
- > opt_balance_threshold)
- opt_balance_threshold <<= 1;
-#endif
- break;
- case 'c':
- if (opt_cspace_max_2pow - 1 >
- opt_qspace_max_2pow &&
- opt_cspace_max_2pow >
- CACHELINE_2POW)
- opt_cspace_max_2pow--;
- break;
- case 'C':
- if (opt_cspace_max_2pow < pagesize_2pow
- - 1)
- opt_cspace_max_2pow++;
- break;
- case 'd':
-#ifdef MALLOC_DSS
- opt_dss = false;
-#endif
- break;
- case 'D':
-#ifdef MALLOC_DSS
- opt_dss = true;
-#endif
- break;
- case 'f':
- opt_dirty_max >>= 1;
- break;
- case 'F':
- if (opt_dirty_max == 0)
- opt_dirty_max = 1;
- else if ((opt_dirty_max << 1) != 0)
- opt_dirty_max <<= 1;
- break;
-#ifdef MALLOC_MAG
- case 'g':
- opt_mag = false;
- break;
- case 'G':
- opt_mag = true;
- break;
-#endif
- case 'j':
- opt_junk = false;
- break;
- case 'J':
- opt_junk = true;
- break;
- case 'k':
- /*
- * Chunks always require at least one
- * header page, so chunks can never be
- * smaller than two pages.
- */
- if (opt_chunk_2pow > pagesize_2pow + 1)
- opt_chunk_2pow--;
- break;
- case 'K':
- if (opt_chunk_2pow + 1 <
- (sizeof(size_t) << 3))
- opt_chunk_2pow++;
- break;
- case 'm':
-#ifdef MALLOC_DSS
- opt_mmap = false;
-#endif
- break;
- case 'M':
-#ifdef MALLOC_DSS
- opt_mmap = true;
-#endif
- break;
- case 'n':
- opt_narenas_lshift--;
- break;
- case 'N':
- opt_narenas_lshift++;
- break;
- case 'p':
- opt_print_stats = false;
- break;
- case 'P':
- opt_print_stats = true;
- break;
- case 'q':
- if (opt_qspace_max_2pow > QUANTUM_2POW)
- opt_qspace_max_2pow--;
- break;
- case 'Q':
- if (opt_qspace_max_2pow + 1 <
- opt_cspace_max_2pow)
- opt_qspace_max_2pow++;
- break;
-#ifdef MALLOC_MAG
- case 'R':
- if (opt_mag_size_2pow + 1 < (8U <<
- SIZEOF_PTR_2POW))
- opt_mag_size_2pow++;
- break;
- case 'r':
- /*
- * Make sure there's always at least
- * one round per magazine.
- */
- if ((1U << (opt_mag_size_2pow-1)) >=
- sizeof(mag_t))
- opt_mag_size_2pow--;
- break;
-#endif
- case 'u':
- opt_utrace = false;
- break;
- case 'U':
- opt_utrace = true;
- break;
- case 'v':
- opt_sysv = false;
- break;
- case 'V':
- opt_sysv = true;
- break;
- case 'x':
- opt_xmalloc = false;
- break;
- case 'X':
- opt_xmalloc = true;
- break;
- case 'z':
- opt_zero = false;
- break;
- case 'Z':
- opt_zero = true;
- break;
- default: {
- char cbuf[2];
-
- cbuf[0] = opts[j];
- cbuf[1] = '\0';
- _malloc_message(_getprogname(),
- ": (malloc) Unsupported character "
- "in malloc options: '", cbuf,
- "'\n");
- }
- }
- }
- }
- }
-
-#ifdef MALLOC_DSS
- /* Make sure that there is some method for acquiring memory. */
- if (opt_dss == false && opt_mmap == false)
- opt_mmap = true;
-#endif
-
- /* Take care to call atexit() only once. */
- if (opt_print_stats) {
- /* Print statistics at exit. */
- atexit(malloc_print_stats);
- }
-
-#ifdef MALLOC_MAG
- /*
- * Calculate the actual number of rounds per magazine, taking into
- * account header overhead.
- */
- max_rounds = (1LLU << (opt_mag_size_2pow - SIZEOF_PTR_2POW)) -
- (sizeof(mag_t) >> SIZEOF_PTR_2POW) + 1;
-#endif
-
- /* Set variables according to the value of opt_[qc]space_max_2pow. */
- qspace_max = (1U << opt_qspace_max_2pow);
- cspace_min = CACHELINE_CEILING(qspace_max);
- if (cspace_min == qspace_max)
- cspace_min += CACHELINE;
- cspace_max = (1U << opt_cspace_max_2pow);
- sspace_min = SUBPAGE_CEILING(cspace_max);
- if (sspace_min == cspace_max)
- sspace_min += SUBPAGE;
- assert(sspace_min < pagesize);
- sspace_max = pagesize - SUBPAGE;
-
-#ifdef MALLOC_TINY
- assert(QUANTUM_2POW >= TINY_MIN_2POW);
-#endif
- assert(ntbins <= QUANTUM_2POW);
- nqbins = qspace_max >> QUANTUM_2POW;
- ncbins = ((cspace_max - cspace_min) >> CACHELINE_2POW) + 1;
- nsbins = ((sspace_max - sspace_min) >> SUBPAGE_2POW) + 1;
- nbins = ntbins + nqbins + ncbins + nsbins;
-
- if (size2bin_init()) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
-
- /* Set variables according to the value of opt_chunk_2pow. */
- chunksize = (1LU << opt_chunk_2pow);
- chunksize_mask = chunksize - 1;
- chunk_npages = (chunksize >> pagesize_2pow);
- {
- size_t header_size;
-
- /*
- * Compute the header size such that it is large enough to
- * contain the page map.
- */
- header_size = sizeof(arena_chunk_t) +
- (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
- arena_chunk_header_npages = (header_size >> pagesize_2pow) +
- ((header_size & pagesize_mask) != 0);
- }
- arena_maxclass = chunksize - (arena_chunk_header_npages <<
- pagesize_2pow);
-
- UTRACE(0, 0, 0);
-
-#ifdef MALLOC_STATS
- memset(&stats_chunks, 0, sizeof(chunk_stats_t));
-#endif
-
- /* Various sanity checks that regard configuration. */
- assert(chunksize >= pagesize);
-
- /* Initialize chunks data. */
- malloc_mutex_init(&huge_mtx);
- extent_tree_ad_new(&huge);
-#ifdef MALLOC_DSS
- malloc_mutex_init(&dss_mtx);
- dss_base = sbrk(0);
- dss_prev = dss_base;
- dss_max = dss_base;
- extent_tree_szad_new(&dss_chunks_szad);
- extent_tree_ad_new(&dss_chunks_ad);
-#endif
-#ifdef MALLOC_STATS
- huge_nmalloc = 0;
- huge_ndalloc = 0;
- huge_allocated = 0;
-#endif
-
- /* Initialize base allocation data structures. */
-#ifdef MALLOC_STATS
- base_mapped = 0;
-#endif
-#ifdef MALLOC_DSS
- /*
- * Allocate a base chunk here, since it doesn't actually have to be
- * chunk-aligned. Doing this before allocating any other chunks allows
- * the use of space that would otherwise be wasted.
- */
- if (opt_dss)
- base_pages_alloc(0);
-#endif
- base_nodes = NULL;
- malloc_mutex_init(&base_mtx);
-
- if (ncpus > 1) {
- /*
- * For SMP systems, create twice as many arenas as there are
- * CPUs by default.
- */
- opt_narenas_lshift++;
- }
-
- /* Determine how many arenas to use. */
- narenas = ncpus;
- if (opt_narenas_lshift > 0) {
- if ((narenas << opt_narenas_lshift) > narenas)
- narenas <<= opt_narenas_lshift;
- /*
- * Make sure not to exceed the limits of what base_alloc() can
- * handle.
- */
- if (narenas * sizeof(arena_t *) > chunksize)
- narenas = chunksize / sizeof(arena_t *);
- } else if (opt_narenas_lshift < 0) {
- if ((narenas >> -opt_narenas_lshift) < narenas)
- narenas >>= -opt_narenas_lshift;
- /* Make sure there is at least one arena. */
- if (narenas == 0)
- narenas = 1;
- }
-#ifdef MALLOC_BALANCE
- assert(narenas != 0);
- for (narenas_2pow = 0;
- (narenas >> (narenas_2pow + 1)) != 0;
- narenas_2pow++);
-#endif
-
-#ifdef NO_TLS
- if (narenas > 1) {
- static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
- 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
- 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
- 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
- 223, 227, 229, 233, 239, 241, 251, 257, 263};
- unsigned nprimes, parenas;
-
- /*
- * Pick a prime number of hash arenas that is more than narenas
- * so that direct hashing of pthread_self() pointers tends to
- * spread allocations evenly among the arenas.
- */
- assert((narenas & 1) == 0); /* narenas must be even. */
- nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
- parenas = primes[nprimes - 1]; /* In case not enough primes. */
- for (i = 1; i < nprimes; i++) {
- if (primes[i] > narenas) {
- parenas = primes[i];
- break;
- }
- }
- narenas = parenas;
- }
-#endif
-
-#ifndef NO_TLS
-# ifndef MALLOC_BALANCE
- next_arena = 0;
-# endif
-#endif
-
- /* Allocate and initialize arenas. */
- arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
- if (arenas == NULL) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
- /*
- * Zero the array. In practice, this should always be pre-zeroed,
- * since it was just mmap()ed, but let's be sure.
- */
- memset(arenas, 0, sizeof(arena_t *) * narenas);
-
- /*
- * Initialize one arena here. The rest are lazily created in
- * choose_arena_hard().
- */
- arenas_extend(0);
- if (arenas[0] == NULL) {
- malloc_mutex_unlock(&init_lock);
- return (true);
- }
-#ifndef NO_TLS
- /*
- * Assign the initial arena to the initial thread, in order to avoid
- * spurious creation of an extra arena if the application switches to
- * threaded mode.
- */
- arenas_map = arenas[0];
-#endif
- /*
- * Seed here for the initial thread, since choose_arena_hard() is only
- * called for other threads. The seed value doesn't really matter.
- */
-#ifdef MALLOC_BALANCE
- SPRN(balance, 42);
-#endif
-
- malloc_spin_init(&arenas_lock);
-
- malloc_initialized = true;
- malloc_mutex_unlock(&init_lock);
- return (false);
-}
-
-/*
- * End general internal functions.
- */
-/******************************************************************************/
-/*
- * Begin malloc(3)-compatible functions.
- */
-
-void *
-malloc(size_t size)
-{
- void *ret;
-
- if (malloc_init()) {
- ret = NULL;
- goto RETURN;
- }
-
- if (size == 0) {
- if (opt_sysv == false)
- size = 1;
- else {
- ret = NULL;
- goto RETURN;
- }
- }
-
- ret = imalloc(size);
-
-RETURN:
- if (ret == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in malloc(): out of memory\n", "",
- "");
- abort();
- }
- errno = ENOMEM;
- }
-
- UTRACE(0, size, ret);
- return (ret);
-}
-
-int
-posix_memalign(void **memptr, size_t alignment, size_t size)
-{
- int ret;
- void *result;
-
- if (malloc_init())
- result = NULL;
- else {
- /* Make sure that alignment is a large enough power of 2. */
- if (((alignment - 1) & alignment) != 0
- || alignment < sizeof(void *)) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in posix_memalign(): "
- "invalid alignment\n", "", "");
- abort();
- }
- result = NULL;
- ret = EINVAL;
- goto RETURN;
- }
-
- result = ipalloc(alignment, size);
- }
-
- if (result == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in posix_memalign(): out of memory\n",
- "", "");
- abort();
- }
- ret = ENOMEM;
- goto RETURN;
- }
-
- *memptr = result;
- ret = 0;
-
-RETURN:
- UTRACE(0, size, result);
- return (ret);
-}
-
-void *
-calloc(size_t num, size_t size)
-{
- void *ret;
- size_t num_size;
-
- if (malloc_init()) {
- num_size = 0;
- ret = NULL;
- goto RETURN;
- }
-
- num_size = num * size;
- if (num_size == 0) {
- if ((opt_sysv == false) && ((num == 0) || (size == 0)))
- num_size = 1;
- else {
- ret = NULL;
- goto RETURN;
- }
- /*
- * Try to avoid division here. We know that it isn't possible to
- * overflow during multiplication if neither operand uses any of the
- * most significant half of the bits in a size_t.
- */
- } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
- && (num_size / size != num)) {
- /* size_t overflow. */
- ret = NULL;
- goto RETURN;
- }
-
- ret = icalloc(num_size);
-
-RETURN:
- if (ret == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in calloc(): out of memory\n", "",
- "");
- abort();
- }
- errno = ENOMEM;
- }
-
- UTRACE(0, num_size, ret);
- return (ret);
-}
-
-void *
-realloc(void *ptr, size_t size)
-{
- void *ret;
-
- if (size == 0) {
- if (opt_sysv == false)
- size = 1;
- else {
- if (ptr != NULL)
- idalloc(ptr);
- ret = NULL;
- goto RETURN;
- }
- }
-
- if (ptr != NULL) {
- assert(malloc_initialized);
-
- ret = iralloc(ptr, size);
-
- if (ret == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in realloc(): out of "
- "memory\n", "", "");
- abort();
- }
- errno = ENOMEM;
- }
- } else {
- if (malloc_init())
- ret = NULL;
- else
- ret = imalloc(size);
-
- if (ret == NULL) {
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in realloc(): out of "
- "memory\n", "", "");
- abort();
- }
- errno = ENOMEM;
- }
- }
-
-RETURN:
- UTRACE(ptr, size, ret);
- return (ret);
-}
-
-void
-free(void *ptr)
-{
-
- UTRACE(ptr, 0, 0);
- if (ptr != NULL) {
- assert(malloc_initialized);
-
- idalloc(ptr);
- }
-}
-
-/*
- * End malloc(3)-compatible functions.
- */
-/******************************************************************************/
-/*
- * Begin non-standard functions.
- */
-
-size_t
-malloc_usable_size(const void *ptr)
-{
-
- assert(ptr != NULL);
-
- return (isalloc(ptr));
-}
-
-/*
- * End non-standard functions.
- */
-/******************************************************************************/
-/*
- * Begin library-private functions.
- */
-
-/******************************************************************************/
-/*
- * Begin thread cache.
- */
-
-/*
- * We provide an unpublished interface in order to receive notifications from
- * the pthreads library whenever a thread exits. This allows us to clean up
- * thread caches.
- */
-void
-_malloc_thread_cleanup(void)
-{
-
-#ifdef MALLOC_MAG
- if (mag_rack != NULL) {
- assert(mag_rack != (void *)-1);
- mag_rack_destroy(mag_rack);
-#ifdef MALLOC_DEBUG
- mag_rack = (void *)-1;
-#endif
- }
-#endif
-}
-
-/*
- * The following functions are used by threading libraries for protection of
- * malloc during fork(). These functions are only called if the program is
- * running in threaded mode, so there is no need to check whether the program
- * is threaded here.
- */
-
-void
-_malloc_prefork(void)
-{
- unsigned i;
-
- /* Acquire all mutexes in a safe order. */
-
- malloc_spin_lock(&arenas_lock);
- for (i = 0; i < narenas; i++) {
- if (arenas[i] != NULL)
- malloc_spin_lock(&arenas[i]->lock);
- }
- malloc_spin_unlock(&arenas_lock);
-
- malloc_mutex_lock(&base_mtx);
-
- malloc_mutex_lock(&huge_mtx);
-
-#ifdef MALLOC_DSS
- malloc_mutex_lock(&dss_mtx);
-#endif
-}
-
-void
-_malloc_postfork(void)
-{
- unsigned i;
-
- /* Release all mutexes, now that fork() has completed. */
-
-#ifdef MALLOC_DSS
- malloc_mutex_unlock(&dss_mtx);
-#endif
-
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_mutex_unlock(&base_mtx);
-
- malloc_spin_lock(&arenas_lock);
- for (i = 0; i < narenas; i++) {
- if (arenas[i] != NULL)
- malloc_spin_unlock(&arenas[i]->lock);
- }
- malloc_spin_unlock(&arenas_lock);
-}
-
-/*
- * End library-private functions.
- */
-/******************************************************************************/
diff --git a/lib/libjemalloc/rb.h b/lib/libjemalloc/rb.h
deleted file mode 100644
index acfe203..0000000
--- a/lib/libjemalloc/rb.h
+++ /dev/null
@@ -1,946 +0,0 @@
-/******************************************************************************
- *
- * Copyright (C) 2008 Jason Evans <jasone at FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice(s), this list of conditions and the following disclaimer
- * unmodified other than the allowable addition of one or more
- * copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice(s), this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- *
- * cpp macro implementation of left-leaning red-black trees.
- *
- * Usage:
- *
- * (Optional, see assert(3).)
- * #define NDEBUG
- *
- * (Required.)
- * #include <assert.h>
- * #include <rb.h>
- * ...
- *
- * All operations are done non-recursively. Parent pointers are not used, and
- * color bits are stored in the least significant bit of right-child pointers,
- * thus making node linkage as compact as is possible for red-black trees.
- *
- * Some macros use a comparison function pointer, which is expected to have the
- * following prototype:
- *
- * int (a_cmp *)(a_type *a_node, a_type *a_other);
- * ^^^^^^
- * or a_key
- *
- * Interpretation of comparision function return values:
- *
- * -1 : a_node < a_other
- * 0 : a_node == a_other
- * 1 : a_node > a_other
- *
- * In all cases, the a_node or a_key macro argument is the first argument to the
- * comparison function, which makes it possible to write comparison functions
- * that treat the first argument specially.
- *
- ******************************************************************************/
-
-#ifndef RB_H_
-#define RB_H_
-
-//__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
-
-/* Node structure. */
-#define rb_node(a_type) \
-struct { \
- a_type *rbn_left; \
- a_type *rbn_right_red; \
-}
-
-/* Root structure. */
-#define rb_tree(a_type) \
-struct { \
- a_type *rbt_root; \
- a_type rbt_nil; \
-}
-
-/* Left accessors. */
-#define rbp_left_get(a_type, a_field, a_node) \
- ((a_node)->a_field.rbn_left)
-#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
- (a_node)->a_field.rbn_left = a_left; \
-} while (0)
-
-/* Right accessors. */
-#define rbp_right_get(a_type, a_field, a_node) \
- ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
- & ((ssize_t)-2)))
-#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
- (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
- | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
-} while (0)
-
-/* Color accessors. */
-#define rbp_red_get(a_type, a_field, a_node) \
- ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
- & ((size_t)1)))
-#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
- (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
- (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
- | ((ssize_t)a_red)); \
-} while (0)
-#define rbp_red_set(a_type, a_field, a_node) do { \
- (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
- (a_node)->a_field.rbn_right_red) | ((size_t)1)); \
-} while (0)
-#define rbp_black_set(a_type, a_field, a_node) do { \
- (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
- (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
-} while (0)
-
-/* Node initializer. */
-#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
- rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
- rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
- rbp_red_set(a_type, a_field, (a_node)); \
-} while (0)
-
-/* Tree initializer. */
-#define rb_new(a_type, a_field, a_tree) do { \
- (a_tree)->rbt_root = &(a_tree)->rbt_nil; \
- rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
- rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
-} while (0)
-
-/* Tree operations. */
-#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
- a_type *rbp_bh_t; \
- for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
- rbp_bh_t != &(a_tree)->rbt_nil; \
- rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
- if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
- (r_height)++; \
- } \
- } \
-} while (0)
-
-#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
- for ((r_node) = (a_root); \
- rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
- (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
- } \
-} while (0)
-
-#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
- for ((r_node) = (a_root); \
- rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
- (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
- } \
-} while (0)
-
-#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
- if (rbp_right_get(a_type, a_field, (a_node)) \
- != &(a_tree)->rbt_nil) { \
- rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
- a_field, (a_node)), (r_node)); \
- } else { \
- a_type *rbp_n_t = (a_tree)->rbt_root; \
- assert(rbp_n_t != &(a_tree)->rbt_nil); \
- (r_node) = &(a_tree)->rbt_nil; \
- while (true) { \
- int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
- if (rbp_n_cmp < 0) { \
- (r_node) = rbp_n_t; \
- rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
- } else if (rbp_n_cmp > 0) { \
- rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
- } else { \
- break; \
- } \
- assert(rbp_n_t != &(a_tree)->rbt_nil); \
- } \
- } \
-} while (0)
-
-#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
- if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
- rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
- a_field, (a_node)), (r_node)); \
- } else { \
- a_type *rbp_p_t = (a_tree)->rbt_root; \
- assert(rbp_p_t != &(a_tree)->rbt_nil); \
- (r_node) = &(a_tree)->rbt_nil; \
- while (true) { \
- int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
- if (rbp_p_cmp < 0) { \
- rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
- } else if (rbp_p_cmp > 0) { \
- (r_node) = rbp_p_t; \
- rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
- } else { \
- break; \
- } \
- assert(rbp_p_t != &(a_tree)->rbt_nil); \
- } \
- } \
-} while (0)
-
-#define rb_first(a_type, a_field, a_tree, r_node) do { \
- rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-#define rb_last(a_type, a_field, a_tree, r_node) do { \
- rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
- rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
- rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
- int rbp_se_cmp; \
- (r_node) = (a_tree)->rbt_root; \
- while ((r_node) != &(a_tree)->rbt_nil \
- && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
- if (rbp_se_cmp < 0) { \
- (r_node) = rbp_left_get(a_type, a_field, (r_node)); \
- } else { \
- (r_node) = rbp_right_get(a_type, a_field, (r_node)); \
- } \
- } \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-/*
- * Find a match if it exists. Otherwise, find the next greater node, if one
- * exists.
- */
-#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
- a_type *rbp_ns_t = (a_tree)->rbt_root; \
- (r_node) = NULL; \
- while (rbp_ns_t != &(a_tree)->rbt_nil) { \
- int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
- if (rbp_ns_cmp < 0) { \
- (r_node) = rbp_ns_t; \
- rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
- } else if (rbp_ns_cmp > 0) { \
- rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
- } else { \
- (r_node) = rbp_ns_t; \
- break; \
- } \
- } \
-} while (0)
-
-/*
- * Find a match if it exists. Otherwise, find the previous lesser node, if one
- * exists.
- */
-#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
- a_type *rbp_ps_t = (a_tree)->rbt_root; \
- (r_node) = NULL; \
- while (rbp_ps_t != &(a_tree)->rbt_nil) { \
- int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
- if (rbp_ps_cmp < 0) { \
- rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
- } else if (rbp_ps_cmp > 0) { \
- (r_node) = rbp_ps_t; \
- rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
- } else { \
- (r_node) = rbp_ps_t; \
- break; \
- } \
- } \
-} while (0)
-
-#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
- (r_node) = rbp_right_get(a_type, a_field, (a_node)); \
- rbp_right_set(a_type, a_field, (a_node), \
- rbp_left_get(a_type, a_field, (r_node))); \
- rbp_left_set(a_type, a_field, (r_node), (a_node)); \
-} while (0)
-
-#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
- (r_node) = rbp_left_get(a_type, a_field, (a_node)); \
- rbp_left_set(a_type, a_field, (a_node), \
- rbp_right_get(a_type, a_field, (r_node))); \
- rbp_right_set(a_type, a_field, (r_node), (a_node)); \
-} while (0)
-
-#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
- bool rbp_ll_red; \
- rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
- rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
- rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
- rbp_red_set(a_type, a_field, (a_node)); \
-} while (0)
-
-#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
- bool rbp_lr_red; \
- rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
- rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
- rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
- rbp_red_set(a_type, a_field, (a_node)); \
-} while (0)
-
-#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
- a_type *rbp_mrl_t, *rbp_mrl_u; \
- rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
- rbp_red_set(a_type, a_field, rbp_mrl_t); \
- rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
- rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
- if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
- rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
- rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
- rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
- rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
- if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
- rbp_black_set(a_type, a_field, rbp_mrl_t); \
- rbp_red_set(a_type, a_field, (a_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
- rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
- } else { \
- rbp_black_set(a_type, a_field, (a_node)); \
- } \
- } else { \
- rbp_red_set(a_type, a_field, (a_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
- } \
-} while (0)
-
-#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
- a_type *rbp_mrr_t; \
- rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
- if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
- a_type *rbp_mrr_u, *rbp_mrr_v; \
- rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
- rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
- if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
- rbp_color_set(a_type, a_field, rbp_mrr_u, \
- rbp_red_get(a_type, a_field, (a_node))); \
- rbp_black_set(a_type, a_field, rbp_mrr_v); \
- rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
- rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
- rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
- rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
- } else { \
- rbp_color_set(a_type, a_field, rbp_mrr_t, \
- rbp_red_get(a_type, a_field, (a_node))); \
- rbp_red_set(a_type, a_field, rbp_mrr_u); \
- rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
- rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
- } \
- rbp_red_set(a_type, a_field, (a_node)); \
- } else { \
- rbp_red_set(a_type, a_field, rbp_mrr_t); \
- rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
- if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
- rbp_black_set(a_type, a_field, rbp_mrr_t); \
- rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
- rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
- } else { \
- rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
- } \
- } \
-} while (0)
-
-#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
- a_type rbp_i_s; \
- a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
- int rbp_i_cmp = 0; \
- rbp_i_g = &(a_tree)->rbt_nil; \
- rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
- rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
- rbp_black_set(a_type, a_field, &rbp_i_s); \
- rbp_i_p = &rbp_i_s; \
- rbp_i_c = (a_tree)->rbt_root; \
- /* Iteratively search down the tree for the insertion point, */\
- /* splitting 4-nodes as they are encountered. At the end of each */\
- /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
- /* the tree, assuming a sufficiently deep tree. */\
- while (rbp_i_c != &(a_tree)->rbt_nil) { \
- rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
- rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
- if (rbp_red_get(a_type, a_field, rbp_i_t) \
- && rbp_red_get(a_type, a_field, rbp_i_u)) { \
- /* rbp_i_c is the top of a logical 4-node, so split it. */\
- /* This iteration does not move down the tree, due to the */\
- /* disruptiveness of node splitting. */\
- /* */\
- /* Rotate right. */\
- rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
- /* Pass red links up one level. */\
- rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
- rbp_black_set(a_type, a_field, rbp_i_u); \
- if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
- rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
- rbp_i_c = rbp_i_t; \
- } else { \
- /* rbp_i_c was the right child of rbp_i_p, so rotate */\
- /* left in order to maintain the left-leaning */\
- /* invariant. */\
- assert(rbp_right_get(a_type, a_field, rbp_i_p) \
- == rbp_i_c); \
- rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
- rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
- if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
- rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
- } else { \
- assert(rbp_right_get(a_type, a_field, rbp_i_g) \
- == rbp_i_p); \
- rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
- } \
- rbp_i_p = rbp_i_u; \
- rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
- if (rbp_i_cmp < 0) { \
- rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
- } else { \
- assert(rbp_i_cmp > 0); \
- rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
- } \
- continue; \
- } \
- } \
- rbp_i_g = rbp_i_p; \
- rbp_i_p = rbp_i_c; \
- rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
- if (rbp_i_cmp < 0) { \
- rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
- } else { \
- assert(rbp_i_cmp > 0); \
- rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
- } \
- } \
- /* rbp_i_p now refers to the node under which to insert. */\
- rbp_node_new(a_type, a_field, a_tree, (a_node)); \
- if (rbp_i_cmp > 0) { \
- rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
- rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
- if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
- rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
- } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
- rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
- } \
- } else { \
- rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
- } \
- /* Update the root and make sure that it is black. */\
- (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
- rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
-} while (0)
-
-#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
- a_type rbp_r_s; \
- a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
- int rbp_r_cmp; \
- rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
- rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
- rbp_black_set(a_type, a_field, &rbp_r_s); \
- rbp_r_p = &rbp_r_s; \
- rbp_r_c = (a_tree)->rbt_root; \
- rbp_r_xp = &(a_tree)->rbt_nil; \
- /* Iterate down the tree, but always transform 2-nodes to 3- or */\
- /* 4-nodes in order to maintain the invariant that the current */\
- /* node is not a 2-node. This allows simple deletion once a leaf */\
- /* is reached. Handle the root specially though, since there may */\
- /* be no way to convert it from a 2-node to a 3-node. */\
- rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
- if (rbp_r_cmp < 0) { \
- rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
- rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
- if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
- && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
- /* Apply standard transform to prepare for left move. */\
- rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
- rbp_black_set(a_type, a_field, rbp_r_t); \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
- rbp_r_c = rbp_r_t; \
- } else { \
- /* Move left. */\
- rbp_r_p = rbp_r_c; \
- rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
- } \
- } else { \
- if (rbp_r_cmp == 0) { \
- assert((a_node) == rbp_r_c); \
- if (rbp_right_get(a_type, a_field, rbp_r_c) \
- == &(a_tree)->rbt_nil) { \
- /* Delete root node (which is also a leaf node). */\
- if (rbp_left_get(a_type, a_field, rbp_r_c) \
- != &(a_tree)->rbt_nil) { \
- rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
- rbp_right_set(a_type, a_field, rbp_r_t, \
- &(a_tree)->rbt_nil); \
- } else { \
- rbp_r_t = &(a_tree)->rbt_nil; \
- } \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
- } else { \
- /* This is the node we want to delete, but we will */\
- /* instead swap it with its successor and delete the */\
- /* successor. Record enough information to do the */\
- /* swap later. rbp_r_xp is the a_node's parent. */\
- rbp_r_xp = rbp_r_p; \
- rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
- } \
- } \
- if (rbp_r_cmp == 1) { \
- if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
- a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
- == false) { \
- rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
- if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
- /* Standard transform. */\
- rbp_move_red_right(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- } else { \
- /* Root-specific transform. */\
- rbp_red_set(a_type, a_field, rbp_r_c); \
- rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
- if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
- rbp_black_set(a_type, a_field, rbp_r_u); \
- rbp_rotate_right(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- rbp_rotate_left(a_type, a_field, rbp_r_c, \
- rbp_r_u); \
- rbp_right_set(a_type, a_field, rbp_r_t, \
- rbp_r_u); \
- } else { \
- rbp_red_set(a_type, a_field, rbp_r_t); \
- rbp_rotate_left(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- } \
- } \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
- rbp_r_c = rbp_r_t; \
- } else { \
- /* Move right. */\
- rbp_r_p = rbp_r_c; \
- rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
- } \
- } \
- } \
- if (rbp_r_cmp != 0) { \
- while (true) { \
- assert(rbp_r_p != &(a_tree)->rbt_nil); \
- rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
- if (rbp_r_cmp < 0) { \
- rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
- if (rbp_r_t == &(a_tree)->rbt_nil) { \
- /* rbp_r_c now refers to the successor node to */\
- /* relocate, and rbp_r_xp/a_node refer to the */\
- /* context for the relocation. */\
- if (rbp_left_get(a_type, a_field, rbp_r_xp) \
- == (a_node)) { \
- rbp_left_set(a_type, a_field, rbp_r_xp, \
- rbp_r_c); \
- } else { \
- assert(rbp_right_get(a_type, a_field, \
- rbp_r_xp) == (a_node)); \
- rbp_right_set(a_type, a_field, rbp_r_xp, \
- rbp_r_c); \
- } \
- rbp_left_set(a_type, a_field, rbp_r_c, \
- rbp_left_get(a_type, a_field, (a_node))); \
- rbp_right_set(a_type, a_field, rbp_r_c, \
- rbp_right_get(a_type, a_field, (a_node))); \
- rbp_color_set(a_type, a_field, rbp_r_c, \
- rbp_red_get(a_type, a_field, (a_node))); \
- if (rbp_left_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c) { \
- rbp_left_set(a_type, a_field, rbp_r_p, \
- &(a_tree)->rbt_nil); \
- } else { \
- assert(rbp_right_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c); \
- rbp_right_set(a_type, a_field, rbp_r_p, \
- &(a_tree)->rbt_nil); \
- } \
- break; \
- } \
- rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
- if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
- && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
- rbp_move_red_left(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- if (rbp_left_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c) { \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
- } else { \
- rbp_right_set(a_type, a_field, rbp_r_p, \
- rbp_r_t); \
- } \
- rbp_r_c = rbp_r_t; \
- } else { \
- rbp_r_p = rbp_r_c; \
- rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
- } \
- } else { \
- /* Check whether to delete this node (it has to be */\
- /* the correct node and a leaf node). */\
- if (rbp_r_cmp == 0) { \
- assert((a_node) == rbp_r_c); \
- if (rbp_right_get(a_type, a_field, rbp_r_c) \
- == &(a_tree)->rbt_nil) { \
- /* Delete leaf node. */\
- if (rbp_left_get(a_type, a_field, rbp_r_c) \
- != &(a_tree)->rbt_nil) { \
- rbp_lean_right(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- rbp_right_set(a_type, a_field, rbp_r_t, \
- &(a_tree)->rbt_nil); \
- } else { \
- rbp_r_t = &(a_tree)->rbt_nil; \
- } \
- if (rbp_left_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c) { \
- rbp_left_set(a_type, a_field, rbp_r_p, \
- rbp_r_t); \
- } else { \
- rbp_right_set(a_type, a_field, rbp_r_p, \
- rbp_r_t); \
- } \
- break; \
- } else { \
- /* This is the node we want to delete, but we */\
- /* will instead swap it with its successor */\
- /* and delete the successor. Record enough */\
- /* information to do the swap later. */\
- /* rbp_r_xp is a_node's parent. */\
- rbp_r_xp = rbp_r_p; \
- } \
- } \
- rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
- rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
- if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
- rbp_move_red_right(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- if (rbp_left_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c) { \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
- } else { \
- rbp_right_set(a_type, a_field, rbp_r_p, \
- rbp_r_t); \
- } \
- rbp_r_c = rbp_r_t; \
- } else { \
- rbp_r_p = rbp_r_c; \
- rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
- } \
- } \
- } \
- } \
- /* Update root. */\
- (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
-} while (0)
-
-/*
- * The rb_wrap() macro provides a convenient way to wrap functions around the
- * cpp macros. The main benefits of wrapping are that 1) repeated macro
- * expansion can cause code bloat, especially for rb_{insert,remove)(), and
- * 2) type, linkage, comparison functions, etc. need not be specified at every
- * call point.
- */
-
-#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
-a_attr void \
-a_prefix##new(a_tree_type *tree) { \
- rb_new(a_type, a_field, tree); \
-} \
-a_attr a_type * \
-a_prefix##first(a_tree_type *tree) { \
- a_type *ret; \
- rb_first(a_type, a_field, tree, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##last(a_tree_type *tree) { \
- a_type *ret; \
- rb_last(a_type, a_field, tree, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##next(a_tree_type *tree, a_type *node) { \
- a_type *ret; \
- rb_next(a_type, a_field, a_cmp, tree, node, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##prev(a_tree_type *tree, a_type *node) { \
- a_type *ret; \
- rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##search(a_tree_type *tree, a_type *key) { \
- a_type *ret; \
- rb_search(a_type, a_field, a_cmp, tree, key, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
- a_type *ret; \
- rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##psearch(a_tree_type *tree, a_type *key) { \
- a_type *ret; \
- rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
- return (ret); \
-} \
-a_attr void \
-a_prefix##insert(a_tree_type *tree, a_type *node) { \
- rb_insert(a_type, a_field, a_cmp, tree, node); \
-} \
-a_attr void \
-a_prefix##remove(a_tree_type *tree, a_type *node) { \
- rb_remove(a_type, a_field, a_cmp, tree, node); \
-}
-
-/*
- * The iterators simulate recursion via an array of pointers that store the
- * current path. This is critical to performance, since a series of calls to
- * rb_{next,prev}() would require time proportional to (n lg n), whereas this
- * implementation only requires time proportional to (n).
- *
- * Since the iterators cache a path down the tree, any tree modification may
- * cause the cached path to become invalid. In order to continue iteration,
- * use something like the following sequence:
- *
- * {
- * a_type *node, *tnode;
- *
- * rb_foreach_begin(a_type, a_field, a_tree, node) {
- * ...
- * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
- * rb_remove(a_type, a_field, a_cmp, a_tree, node);
- * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
- * ...
- * } rb_foreach_end(a_type, a_field, a_tree, node)
- * }
- *
- * Note that this idiom is not advised if every iteration modifies the tree,
- * since in that case there is no algorithmic complexity improvement over a
- * series of rb_{next,prev}() calls, thus making the setup overhead wasted
- * effort.
- */
-
-#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
- /* Compute the maximum possible tree depth (3X the black height). */\
- unsigned rbp_f_height; \
- rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
- rbp_f_height *= 3; \
- { \
- /* Initialize the path to contain the left spine. */\
- a_type *rbp_f_path[rbp_f_height]; \
- a_type *rbp_f_node; \
- bool rbp_f_synced = false; \
- unsigned rbp_f_depth = 0; \
- if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
- rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
- rbp_f_depth++; \
- while ((rbp_f_node = rbp_left_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
- rbp_f_path[rbp_f_depth] = rbp_f_node; \
- rbp_f_depth++; \
- } \
- } \
- /* While the path is non-empty, iterate. */\
- while (rbp_f_depth > 0) { \
- (a_var) = rbp_f_path[rbp_f_depth-1];
-
-/* Only use if modifying the tree during iteration. */
-#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
- /* Re-initialize the path to contain the path to a_node. */\
- rbp_f_depth = 0; \
- if (a_node != NULL) { \
- if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
- rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
- rbp_f_depth++; \
- rbp_f_node = rbp_f_path[0]; \
- while (true) { \
- int rbp_f_cmp = (a_cmp)((a_node), \
- rbp_f_path[rbp_f_depth-1]); \
- if (rbp_f_cmp < 0) { \
- rbp_f_node = rbp_left_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1]); \
- } else if (rbp_f_cmp > 0) { \
- rbp_f_node = rbp_right_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1]); \
- } else { \
- break; \
- } \
- assert(rbp_f_node != &(a_tree)->rbt_nil); \
- rbp_f_path[rbp_f_depth] = rbp_f_node; \
- rbp_f_depth++; \
- } \
- } \
- } \
- rbp_f_synced = true;
-
-#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
- if (rbp_f_synced) { \
- rbp_f_synced = false; \
- continue; \
- } \
- /* Find the successor. */\
- if ((rbp_f_node = rbp_right_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
- /* The successor is the left-most node in the right */\
- /* subtree. */\
- rbp_f_path[rbp_f_depth] = rbp_f_node; \
- rbp_f_depth++; \
- while ((rbp_f_node = rbp_left_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
- rbp_f_path[rbp_f_depth] = rbp_f_node; \
- rbp_f_depth++; \
- } \
- } else { \
- /* The successor is above the current node. Unwind */\
- /* until a left-leaning edge is removed from the */\
- /* path, or the path is empty. */\
- for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
- if (rbp_left_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1]) \
- == rbp_f_path[rbp_f_depth]) { \
- break; \
- } \
- } \
- } \
- } \
- } \
-}
-
-#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
- /* Compute the maximum possible tree depth (3X the black height). */\
- unsigned rbp_fr_height; \
- rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
- rbp_fr_height *= 3; \
- { \
- /* Initialize the path to contain the right spine. */\
- a_type *rbp_fr_path[rbp_fr_height]; \
- a_type *rbp_fr_node; \
- bool rbp_fr_synced = false; \
- unsigned rbp_fr_depth = 0; \
- if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
- rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
- rbp_fr_depth++; \
- while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
- rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
- rbp_fr_depth++; \
- } \
- } \
- /* While the path is non-empty, iterate. */\
- while (rbp_fr_depth > 0) { \
- (a_var) = rbp_fr_path[rbp_fr_depth-1];
-
-/* Only use if modifying the tree during iteration. */
-#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
- /* Re-initialize the path to contain the path to a_node. */\
- rbp_fr_depth = 0; \
- if (a_node != NULL) { \
- if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
- rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
- rbp_fr_depth++; \
- rbp_fr_node = rbp_fr_path[0]; \
- while (true) { \
- int rbp_fr_cmp = (a_cmp)((a_node), \
- rbp_fr_path[rbp_fr_depth-1]); \
- if (rbp_fr_cmp < 0) { \
- rbp_fr_node = rbp_left_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1]); \
- } else if (rbp_fr_cmp > 0) { \
- rbp_fr_node = rbp_right_get(a_type, a_field,\
- rbp_fr_path[rbp_fr_depth-1]); \
- } else { \
- break; \
- } \
- assert(rbp_fr_node != &(a_tree)->rbt_nil); \
- rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
- rbp_fr_depth++; \
- } \
- } \
- } \
- rbp_fr_synced = true;
-
-#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
- if (rbp_fr_synced) { \
- rbp_fr_synced = false; \
- continue; \
- } \
- if (rbp_fr_depth == 0) { \
- /* rb_foreach_reverse_sync() was called with a NULL */\
- /* a_node. */\
- break; \
- } \
- /* Find the predecessor. */\
- if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
- /* The predecessor is the right-most node in the left */\
- /* subtree. */\
- rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
- rbp_fr_depth++; \
- while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
- rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
- rbp_fr_depth++; \
- } \
- } else { \
- /* The predecessor is above the current node. Unwind */\
- /* until a right-leaning edge is removed from the */\
- /* path, or the path is empty. */\
- for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
- if (rbp_right_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1]) \
- == rbp_fr_path[rbp_fr_depth]) { \
- break; \
- } \
- } \
- } \
- } \
- } \
-}
-
-#endif /* RB_H_ */
More information about the varnish-commit
mailing list